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SUMMARY OF WORK COMPLETED

Research performed under this grant contributed to papers [I]-[8] listed below in the

references. The papers fall into four areas.

1. [11-[31 concerned arbitrarily varying channels. Preliminary versions of [1] and [3] were

included in last year's report. These papers have since appeared in the literature and

are therefore not included in this report.

2. [4] and [8] focused on the design of distributed estimation systems subject to communi-

cation and computation constraints. The theory can be found in [4] and a description

and listing of the programs used to implement the design algorithm can be found in

[8]. Both of these papers are included with this report.

3. [5] and [71 concerned the computation of shot-noise probability distributions and image

detection based on shot-noise observations. These papers are included with this report.

4. [6] is a tutorial paper on wavelet transforms for discrete-time periodic signals. This

paper is included with this report.
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Submitted to IEEE TRANSACTIONS ON INFORMATION THEORY

Distributed Estimation and Quantization

John A. Gubner, Member, IEEE

Abstract - We develop an algorithm for the design of an n- EF X I Y1,, .. n ] at the fusion center, even if the for-
sensor distributed estimation system subject to communication mula is relatively simple, may be prohibitive. Such
and computation constraints. The algorithm uses only bivariate considerations are important if the estimate of X must
probability distributions and yields locally optimal estimators be computed in real time. By using a suboptimal es-
that satisfy the required system constraints. It is shown that timator of X for which some of the processing can be
the algorithm is a generalization of the classical Lloyd-Max done locally at the sensor platforms, it may be possi-
results. ble to design an acceptable estimator that can operate

Index Terms - Distributed estimation, quantization, Lloyd- in real time.
Max algorithm. 3) As indicated in Fig. 1, the sensor platforms transmit

their data to the fusion center. However, using any
I. INTRODUCTION physical communication system, it is not possible to

transmit real-valued quantities without distortion. In
Consider the distributed estimation system shown in this situation, the conditional expectation, or even the

Fig. 1. The system consists of n sensor platforms whose best linear estimate, is generally a physically unreal-
respective measurements, Y1 , .... , Y0 , are related to some izable solution.
unobservable quantity, say X. Each sensor platform pro-
cesses its respective measurement and transmits the result In this paper we develop an algorithm to design solutions
over a communication channel to a common fusion cen- to the distributed estimation problem that do not suffer
ter. The sensors do not communicate with each other, and from these difficulties.
there is no feedback from the fusion center to the sensor
platforms. The task of the fusion center is to estimate the
unobserved quantity X. We denote this estimate by t.
Clearly, X is a function of Y1 ,. .. , Y, and we can write
Xt = f(Y ' ..... Yn) for some function f. The problem then
is to choose the function f so that t is close to X in some Sensor . Sensor
sense. For example, it is well known that in the appropri- Platform 1 Platform n
ate probabilistic setting, the minimum-mean-square-error
estimate of X given Y1 .... Y,, is the conditional expec-
tation of X given Y1 ... , . denoted E[ X I Y1 ,. .. , Y, ].
However, there are many situations in which the condi-
tional expectation does not provide a satisfactory solution Fusion
to the problem of choosing f: Center

1) In general, the functional form of E[ X I Yi,. .. , Yn ] as
a function of Y1 .. , Yn is difficult determine, and it
requires knowledge of the joint probability distribu- Estimate of X
tion of X, Y, ..... Y,,. In practice this complete joint
distribution may not be available. Fig. 1. A Distributed Estimation System.

2) To compute E[ X I 1',-.-,Yn , the fusion center must
in general have access to all of the sensor measure-
ments Y1, . •., Y, Hence, even if the sensor platforms II. BACKGROUND AND NOTATION
have local processing capability, it is of little use in
computing E[ X I Y..... Y, ]. If the number of sen- Our approach is to consider quantization for distributed
sor platforms is very large, the burden of computing estimation systems. The goal of quantization in such sys-

tems is to provide a good estimate of the unobservable,
This r-eearch was presented in part at the 1990 IEEE International X, rather than to reconstruct the sensor measurements

Symposium on Information Theory, San Diego, CA, Jan. 14-19,1990. YI .... ,'4 as in [3]. Quantization for estimation has been
This work was supported in part by the Air Force Office ol Scientific studied for a single sensor by Ephraim and Gray [2] and
Research under Grant AFOSR-90-0181.

The author is with the Department olf Electrical and Computer by Ayanoglu (1]. The multi-sensor case has been studied
Engineering, University of Wisconsin, Madison. WI 53706. by Lam and Reibman [5], and we discuss their work in



more detail below. The paper by Zhang and Berger [9] Clearly, in order to compute (3), we need to know
considers an asymptotic estimation problem in which the Er X I y1.....Y,]. If the entire joint distribution Fyy1  .,

observations are discrete random variables taking finitely is not available, computation of h will not be possible in
many values and the unobservable quantity is not a ran- general. Another consideration in some applications is the
dom variable, but a deterministic and unknown parameter computation of (3) in real time. If (3) is not computable in
in some finite-dimensional Euclidean space. real time, all the different possible values of the right-hand

side of (3) will have to be precomputed and stored. For
A. System Model an n-sensor system with N-component partitions, there

are Nn different numbers to compute and store. Finally,
Lomet probability sp. e real-vae racendom v lar fonm if more sensors are added at a later date, there will be no

some probability space (mn, F, P). Each sensor platform way to take advantage of the work already done to develop
k processes its measurement Yt to obtain an output Zk. the n-sensor system; all of the numbers given by (3) will
Each Z& is then transmitted to the fusion center. We have to be recomputed for an even larger value of n.

assume that the communication channel connecting the h e precding for an sumen l a t the on.

sensors to the fusion center has a positive capacity, and The preceding paragraph assumed that the partitions
that the use of error-correcting codes permits us to view were given. If h is arbitrary and given, and the partitions

the channel as noiseless. We suppose that the channel .Aks}iN=1 are given for k i 1, then the remaining partition
should satisfy (in order to minimize (2) [5])

can transmit messages of log 2 N bits without error, where
N > 2 is an integer. For each k, let .4 kt ...... 4 kN be a par- yE A&, :* Vhi(y) <_ Vij(y) for all j= I. .
tition of 111. We require that the sensor platform output (4)
Zk be given by where,

N Vl]i(y) ='0 E[JE[X IY 1,..... I'] - h (i - )12 1 Y 1 y],
Zk E Zzi- I)IA,(Yk), (1)

,=1 and hj(i- 1) = h(Z1 ,. .... Zl,i - 1,Z+,.•.,Z). The

where I.(y) denotes the indicator function of the set A C approach in [5] was to use (3) and (4) as the basis of an

I[R i.e.. [(y) = I if y E A and [.A(y) = 0 otherwise. algorithm for computing a locally optimal quantizer for a

Under the preceding constraints, the function f dis- distributed estimation system. Briefly, one starts with an

cussed in Section I must be of the form arbitrary initial quantizer and computes a function htl)
given by (3). Using h(l) and the initial partition, a new

f(Y 1 . .Yn) = h(Z 1 ,. .. Z,n), partition is generated using (4). One then starts over and
uses the new partition to generate h( 2 ) according to (3),

where each Zk is equal to the function of Yk determined and so on. The algorithm stops when the mean-square er-
by (1). ror given by (2) when h = h(m) (m is the iteration number)

is small enough.

B. Relation to [5] As the preceding discussion indicates, the computational
size of this problem grows exponentially with the number

We now briefly summarize the approach in [5]. If the sets of sensors n. Below we impose constraints on h so that the
{.4fk, } are fixed, one wants to find a function h(Z,... Z) size of the problem of finding a locally optimal quantizer
that minimizes the mean-square error, grows linearly with n.

EljX - h(Z .... Zn)I2 1]; (2)
IE1. CONSTRAINING THE FUSION CENTER

hence, the optimal h is the conditional expectation, Our approach [4] is to constrain the computational capa-

h(z... :n) = E[X Z = i Z ]. bilities of the fusion center a priori as follows. We require
that

n
If we set ii = :- + I ..... in= :+ I and let X = h(Z, ... ,Z) = Zgk(Zk), (5)

B A .4 1 1 1x...x4,,,, where
where

N

then this conditional expectation is given by gN(Z&)=a ZckI{i.l}(Zk). (6)

B i=1

] E[X I Y, = Y . Yn= yn ]dFy, ,(yi, . ) (3) Remark: In spite of the sums in (5) and (6), the fusion

P(Y1 E A1,,. Y E A,) (3) center is performing a nonlinear operation on the input



data Z . . Z,,. In fact, since the Zk are discrete random Recalling that ZI is a function of Y, (cf. (1)), we can use

variables, the set of possible inputs does not constitute a the smoothing property of conditional expectation to write

vector space over ER. Similarly, each g& in (6) is a nonlinear

function of Zk, and in (1), Z, is a nonlinear function of Yk. Ji = E[[g1(Z,){gg(Z,)-2(E[X I Y, ]- E[gk(Zk) I Y])}].
k;tl

Combining (5) and (6), and recalling that Zk = - 1 if We can then write
and only if Yk E Ak,, we have N

NJ1 E I . Vii(y) dFy, (y),

S= ZZCk.1,,,(Yk). (7)

k=1 z=1
where •tidy) a_ c,,(ct, - 2r.,(y)) and

Clearly, X is a nonlinear function of Y, .... , Y,,. However,

if the partitions at the sensors are fixed, choosing the {ck,} rn(y) E[ I Y, = y] - Z E[gk(Zk) I Y, = yl]
that minimize E[ IX - t1l] is a linear-estimation problem k#1

whose solution is given by the usual normal equations. In E[X Y,=y]
this case. we will have Nn equations in Nn unknowns. N

Hence, the number of equations will grow linearly with - Z ZckjP(Yk E Aki I i Y). (11)

the number of sensors n. The moments needed to write k~l 2=1

down the normal equations are

Clearly, if the {cki,} are fixed for all k and i, and if the
{ P(yk E .4k,)bi I = k, partitions {Ak,} =I are fixed for k 96 1, then we should putE~~,,•kl~,('t]= P(I E A k,,Yt E Aij), 1l6k, I

(8) •1 E A,, -• qat(y) < •,,'(y) for all i' = 1....N.

wh-re I If if j and 6,1 = 0 otherwise, and

If we assume that ctl < ... < cIN, then this is equivalent

E[X1,Y 1 = j4k. E[X = y dFyJy). (9) to rEEJR: ,X C <ry)< , 3 + tY•it 12

Note that one needs only the joint distributions of the A": yE R:cl'i- I2 <rd t)<c +c'"+"- 2(2

form Fy,,y and Fxy, and not the entire joint distribution

FxyI, I'". (The choice of < and < is arbitrary and is made so that
the {A,}=t1 will be disjoint.) Observe that the function
rr depends on the {ckj jv I for all k i 1. Also, the set

k. we write Ali in (12) is not an interval, but rather the inverse im-

A =A({.41,,= ..{ NI age of an interval. It is also important to observe that

= ' A I=) to compute rt for i = 1,...,n only requires knowing the

We denote the procedure of solving the above-mentioned two-dimensional joint distributions Fxy, and Fray, for all

linear estimation problem by SN(A). Letting C denote the k and 1. An important consequence of this fact is that

n x N matrix with elements c&,, we write C = SN(A). if we decide to add another sensor to measure, say Y,+I,
our prior knowledge of Fxy, and Fy'•y, for k, I < n can be

We now discuss how to find a good partition. If the reused. Of course, we would still need to obtain Fxy,+,

matrix C is fixed, it is now very natural to ask how the and Fy, y.+, for k = 1,.. ., n.

best partition is characterized. To obtain the answer to We conclude this section with a final definition and a

this question. fix any I = I_. n, and write remark.

E[i.X - .N'] = E[IX - g,(Z,) - Egk(Zk)I2J. (10) Definition 2: We introduce the procedure U,(C,A). Re-
#tl call our notation in Definition 1. Let A = Ut(C, A) be ob-

tained from A by replacing (Ati}.=, with (Aul=,)', where

The right-hand side of (10) can be expanded into nine each Ai is given by the right-hand side of (12).

terms: however, only five terms will involve Z,. Denoting
the sum of these five terms by Ji, we have Remark: If n = 1 and X = Y1, then the normal equa-

tions reduce to

., = E[g:(Z1)fg,(Z1) - 2(X - Egk(Zk))[
t P(Yi E A•,)c•, = E[Y•I1,,(Y1)],



or where X, W1 , and W2 are statistically independent were
IA' ydFy1 (y) considered.

Ci " P(Y1 E Ali) Example (8, Example 8]: Let X have density

Further, r1 (y) = y, and so 4[i - cos(.)], IxI < b,

Ali = {yE IR: Cli-lcli -< Y cli-+ cl'i+l 0, otherwise, (13)

where d • 0.3419 is a normalization constant and b = 2
In other words, we recover the classical Lloyd-Max condi- (see F 2). W e andrhavezt he same density

tions for locally optimal quantizers [6, 7]. (see Fig. 2). We let W, and W2 have the same density
except that b =1

IV. THE DESIGN ALGORITHM

a 19-3
Using the basic procedures SN and U1 , 1= 1...,n, de- 4OoC -

fined in the preceding section, there are two, almost iden-
tical, algorithms for generating approximately locally op-
timal quantizers for distributed estimation systems. moo-

Algorithm 1 200.00 -- _________

Let A ({ A4 ,} N , { .4_.} N ) be given. 20_L____

C := SN(A) ,MOO-

loopl: for I = 1 to n 100 -
A := U1(C, A)

next 1 - -. t
C := SN(A) -_o

if stopping criterion not met, go to loopl -2 .1.0 .0M 1.00 100

end Fig. 2. Density p(',) in (13) with b = 2.

Algorithm 2 With N = 8 (3-bit quantizers), the Lloyd-Max partitions

Let A = ({A 1 i , -.. ., {A,}j= ) be given, for the random variables Yk, k = 1,2, are identical and are
C := SN(A) given by

loop2: for I = 1 to n Aki = (-oo,-1.3273]
A:= U(C, A) Ak2 = (-1.3273,-1.24191
C :=SN(A)

next l Ak3  = (-1.2419,-1.0374]
it stopping criterion not met, go to loop2 Ak 4  = (-1.0374,0]
end Ake = (0,1.0374] (14)

While the preceding algorithms appear simple enough, Aks = (1.0374,1.2419]
their implementation is nontrivial. The two main difficul-
ties in implementing the algorithms are the computation Ak. = (1.2419,1.3273]
of the function rl(y) in (11) and the characterization of the Aks = (1.3273, oo).
inverse images in (12). Note that even if X, Y1,. .., Y,, are
jointly Gaussian, we cannot write (11) in closed form even Solving the normal equations for C = SN(A), we have
if the Aki are intervals. Hence, the sets Ali in (12) must
be determined numerically and then a description of them E[ IX - -12] = 0.18129.
must be stored in a suitable data structure.

A set of programs has been developed [8] to implement Note that the minimum mean square error achievable by

Algorithms I and 2 when provided with subroutines to a linear estimator is 0.18534. Thus, just using the Lloyd-
compute the particular moments and probabilities for a Max quantizers and doing linear estimation on ZI, Z2 can
given situation. Several examples of the form do better than pure linear estimation. Using Algorithm 1,

we initialized A to the Lloyd-Max partition in (14). After
Yk = X + Wk, k = 1,2, 5 passes through the loop in Algorithm 1, the partitions

1.
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V. CONCLUSION

We have developed an algorithm for the design of a dis-
tributed estimation system with n sensors and a single fu-
sion center that is subject to communication and computa-
tion constraints. The algorithm uses only bivariate prob-
ability distributions and yields locally optimal estimators
that satisfy the required system constraints.

While this work was motivated by problems in sensor
fusion, the ideas can also be applied in a general nonlin-
ear estimation context. In other words, estimators of the
form (7) constitute a class of nonlinear estimators, and the
algorithm presented here can be used to obtain a locally
optimal nonlinear estimator from this class.



APPENDIX B

REPRINT OF REFERENCE [8]



QUANTIZATION FOR
DISTRIBUTED ESTIMATION SYSTEMS

by

WAEL HAIDAR WEHBE

A report submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

at the

UNIVERSITY OF WISCONSIN-MADISON

1992

9 
ý



1. Introduction

Distributed estimation systems lie at the heart of many important applications. For

example, distributed estimation systems are employed by public power utilities to determine

various loads and voltages both inside and outside their services areas. Improved estimation

systems would permit them to provide electricity more economically. Another application of

distributed systems is in the area of air travel contro!. In this case, many dispersed radars

monitor aircraft in order to provide guidance and to avoid collisions. Better estimation

systems would provide safer air travel.

In this report, we consider a distributed estimation system consisting of n sensors that

transmit their findings to a common fusion center over a channel of positive, finite capacity.

Using such a system, it is desired to estimate some quantity X, which cannot itself be

observed. Because the communication channel has finite capacity, it is necessary for the

sensors to quantize their measurements before transmission.

After some preliminary definitions in Section 2, we give a detailed overview of the con-

strained estimator approach in Section 3. In Section 4 we present an algorithm for quan-

tization in distributed estimation systems (the multi-sensor case) for which the theory was

outlined in Section 3. Section 4 also contains some numerical results obtained using this

algorithm. Finally in Section 5 we give an overview of the code used to implement the

algorithm presented in Section 4.

2. Background and Notation

Consider the distributed estimation system shown in Figure 1. This system consists of

n sensor platforms that transmit their findings over a communication channel to a common

fusion center. The sensors do not communicate with each other. Using this system some

quantity, X, is to be estimated. However, only the sensor measurements Y 1,..., Y,, which are

related to X, are available. Suppose that the findings, Y1,..., Y,,, of the n sensor platforms

are transmitted to the filsinn center over channels capable of transmitting at most R bits per

second during a finite time interval [0, T]. Then each sensor k communicates the real number

Yi by sending RT-bit word to the fusion center. Hence, it is necessary for the sensors to



quantize their measurements.

Y, Y

Sensor ... Sensor
Platform 1 Platform n

SFusion

Center

Estimate of X

Figure 1: A Distributed Estimation System.

Let X, Y1,..., Y,K be real-valued random variables on some probability space (f, .F, P).

Since each measurement Yk must be mapped into an RT-bit word, it is convenient to set

N = 2RT. We assume that each sensor k is equipped with a partition, {Aki , and that

sensor k transmits the random variable

N

Zk = L(i- 1)lAh,(Yk) (1)
i=1

to the fusion center without error. (Here IA(y) denotes the indicator function of the set A;

i.e., IA(Y) = 1 if y E A and IA(!y) = 0 otherwise.) Note that the event {Zk = i - 1} is the

same as the event {Yk E Aki}.

Below we give an overview of the constrained estimator approach, which yields an algo-

rithm for quantization in distributed estimation systems. We should note that the goal of

quantization in such systems is to provide the best estimate of the unobservable X given

the measurements Y1,..., Y, related to X. Our goal is not to reconstruct the measurements

Yi,..., Y,, at the fusion center.

I)



3. The Constrained Estimator

Our approach is to constrain the computational capabilities of the fusion center a priori

as follows. Denote the fusion center output by X. We require that

E = gk(Zk),
k=1

where
N

gk(Zk) = x_ cki{,_j(Zk).
i=1

In other words, since Zk = i - 1 if and only if Yk E Aki,

n N

xA = I (Yk). (2)
k=l i=1

Clearly X is a nonlinear function of Yk. It is convenient to rewrite (2) in matrix notation.

Let the matrices h and a be defined as:

h •= IA1.(Y1) ,IA,1(Y1) , ... ,I An, (Yn) ,I... ,IIA ,N (Yn) ]T

a [C-e,C12 .... Cnl , • - •, CnN.

Then the fusion center output becomes,

f( = aTh. (3)

When the partitions at the sensors are fixed, the problem of choosing a to minimize

E[ IX - Xj2 ] is a simple linear estimation problem whose solution is given by the normal

equations. That is, the optimal a is the solution of

Ra = r, (4)

where R a= E[hhT] and r g E[Xh]. To solve the normal equations, we have Nn equations

in Nn unknowns. Hence, the number of equations will grow linearly with the number of

sensors n. For example if n = 4 and N = 2, there will be 8 equations. The moments needed

to write down the normal equations are

E[IAk,(Yk)IAj,(Y,)] P(Yk E Ak,)6, 3, if I = k, (5)

P(Yk E AkA,Yi E Ali), if lI k,



where 6,, = 1 if i = j and 0 otherwise, and

E[XIA,,(Yk)] = L E[X j Yk= y]dFy(y) (6)

Definition 1. Given a partition {Aki.}jN for each sensor k, we write

A I .

We denote the procedure of solving the above-mentioned linear estimation problem by

SN(A). Letting C denote the n x N matrix with elements cki, we write C = SN(A).

Clearly C and a contain the same data, simply rearranged.

How to find a good partition. If the matrix C is fixed, it is now very natural to ask how the

best partition is characterized. To obtain the answer to this question, fix any I = 1,...,n,

and write

E[ IX - (12] = E[IX-gj(Z,)- E gk(Zk)j ]. (7)
k#I

The right-hand side of (7) can be expanded into nine terms; however, only five terms will

involve Z1. Denoting the sum of those five terms by J1, we have

J, = E[gi(Z,){gi(Zi) - 2(X- Fgk(Zk))}].
k#i

Recalling that Z, is a function of Y1 (cf. (1)), we can use the smoothing property of conditional

expectation to write,

J, = E[g,(Z,){g,(Z,) - 2(E[X I Yi]- -E[gk(Zk) I Y])}].
k*L

We can then write

it E clif{c,, - 2(E[X I Y1 = yj- E E[gk(Zk-) I Yj= y])} dFy,(y).i=1 fAt, k~l

Clearly, 4i the {ck,1 are fixed for all k and i, and if the partitions {Aki,}N. are fixed for k # 1,

then we should put

y E Al 4=. ('p(y) < Wpj,(y) for all i' = 1,..., N. (8)



We can obtain a simpler expression for (8) by setting

r(y) E[X IYt =y]- ZE[gk(Zk)I Y= Y
k~l

N

- E[XIY I= Z =Ack• P(YkEAkj IY=Y). (9)
k$1 j=1

We can then write pji(y) = c,1 (ci2 - 2rj(y)). If we assume that ca1 < ... < ClN, then (8) is

equivalent to

Ali = CE IR cl'i-- + C, < r C(y) < C" + ct"+'_ (10)
2 2r() 2 -

Observe that the function rl depends on the {Ckj},V=, for all k 54 1. Also, the set Ali in (10)

is not an interval, but rather the inverse image of an interval.

Definition 2. Recall our notation in Definition 1. Let

UI(C, A) QA i NJ .. IN l ~ , N1UC )~ ({A 1 ,}•= 1,..., {A-, 1 ,,}•=1,{A,},.{A ,}=,

where each Ai is given by the right-hand side of (10).

Finally to evaluate the performance of the constrained estimator algorithm the mean

square error is computed. If )X satisfies (3) and a satisfies (4), the mean square error is:

E[IX-X12 ] = E[X 2+k 2 -2XkI

= E[X 2 + (aTh) 2 - 2aTXh]

= E[X 2 ]- 2aTr + aTRa

= E[X 2 ] - aTr ()
- N

= E[X 2 1 -E CkiE[XIA,(Yk)1.
k=1 i=1

Remark. If n = 1 and X = Y1, then the normal equations reduce to

P(Yi E A11)cli = E[ Yl IA,,(Yl)],

or

orI= fA, ydFy,(y)
= P(Y 1 E Ali)-

, 'q



Further, ri(y) = y, and so

Ali = {yE IR: cli-l + c' }2 "

In other words, we recover the classical Lloyd-Max conditions for locally optimal quantizers

[1, 2].

4. Numerical Results

Using the basic procedures SN and Ul, 1 = 1,...,n, defined in the preceding section,

there is an obvious algorithm for obtaining (approximate) locally optimal quantizers for

distributed estimation systems.

Algorithm 1

Let A =({A}J, ... ,{Ai}IN1) be given.
C := SN(A)

loopl: for I = I to n
A := U1(C,A)

next 1
C := SN(A)
if stopping criterion not met, go to loopl
end

While the preceding algorithm appears simple enough, its implementation is not trivial.

The two main difficulties in implementing the algorithm are the computation of the func-

tion rj(y) in (9) and the characterization of the inverse images in (10). Note that even if

X, Y 1,..., Y,, are jointly Gaussian, we cannot write (9) in closed form even if the A&i are

intervals. Hence, the sets Ali in (10) must be determined numerically and then a description

of them must be stored in some data structure.

Algorithm 1 has been programmed, and we have run several numerical examples. In all

the examples below, we took

Y, = X + Wk, k= 1,...,n, (12)

where X, Wl,..., W,, are statistically independent.



Example 1. We first took n = 1 sensor, N = 4 (2-bit quantizers), and Y1 = X - N(0, 1);

i.e, X is normal with mean 0 and variance 1. In other words, we used our algorithm to solve

the classical Lloyd-Max problem. From several initial partitions, our algorithm quickly

converged to the optimal quantizer,

Aki = (-oo, -0.9816]

Ak2 = (-0.9816,0]

Ak3 = (0,0.98161

Ak4 = (0.9816, o),

which was originally reported in [2, Table I].

Example 2. Suppose n = 2 sensors, N = 4 (2-bit quantizers), where X - N(0,0.9) and

WI, W2 , N(0,0.1). Since Y, and Y2 are N(0, 1) we take the initial partition for each sensor

to be the Lloyd-Max partition found in Example 1. Taking C = SN(A), we find that

EtJX--X1 2 1 = 0.113.

After 6 passes through the loop in Algorithm 1, we find that

All = (-oo,-1.28] A21 = (-oo0,-0.843]

,412 = (-1.28,0] and A22 = (-0.843,0]

A13 = (0,1.28] A23 = (0,0.843]

A 14 = (1.28,oo) A2 4 = (0.843, o)

and

E[IX - k12 1 = 0.107,

which is about a 5% reduction in the mean square error.

Example 3. Let n = 2 sensors, N = 4 (2-bit quantizers), where this time X -• U(-0.9, 0.9);

i.e., uniform over the interval (-0.9,0.9). We take W1 , W 2 - U(-0.11, 0.11). Clearly, Yk,

k = 1,2, has a density given by the convolution of two uniform densities. We initialize the

"0



partition of each sensor to its Lloyd-Max partition, which in this case is (k = 1,2)

Ak, = (-oo, -0.45461

Ak2 = (-0.4546,0]

Ak3 = (0, 0.45461

Ak4 = (0.4546, o0).

Taking C = SN(A), we find that

E[IX -_ ] -= 0.01358.

After 21 passes through the loop of Algorithm 1, we find that

All = (-oc, -0.6390] A21 = (-so, -0.3929]

A12 = (-0.6390, -0.1062] and A22 = (-0.3929, -0.1450]

A13 = (-0.1062,0.6224] A23 = (-0.1450,0.3620]

A1 4 = (0.6224, oo) A24 = (0.3620,oo)

and

E[IX-X1 2 1 0.00895,

which is a reduction of about 34.5% in the mean square error. We should note that after

only 8 passes the mean square error had been reduced by about 33%.

Example 4. We modify the previous example by increasing the partition size from N = 4

(2-bit quantizers) to N = 64 (8-bit quantizers). We initialize the partition of each sensor to

its Lloyd-Max partition. Taking C = SN(A), we find that the initial mean square error is,

E[ IX -_ f1 2 I = 0.00197.

Algorithm I did not improve substantially the initial mean square error; however, the value

0.00197 is smaller than the minimum mean square error obtainable by linear estimation,

which is 0.0020012.

Example 5. Siuppose n = 2 sensors, N = 4 (2-bit quantizers), where X , U(-0.9,0.9),

IV, - U(-0.11, 0.11) and the density for W2 is
a Jwj_<b,

2 tan-I(ba)(1 + (aw)2)'

fW2(w) = (13)

0, otherwise,

iti



where b = 0.11 and a = 1. We initialize the partition of each sensor to its Lloyd-Max

partition. We have

A,1  = (-oo, -0.4546] A21 = (-co, -0.4456]

A 1 2 = (-0.4546,01 and A22 = (-0.4456,01

A 1 3 = (0,0.4546] A23 = (0,0.4456]

A14 = (0.4546, oc) A24 = (0.4456, ).

Taking C = SN(A), we find that

E[IX - kJ1] = 0.0136.

After 21 passes through the loop in Algorithm 1, we find that

All = (-oo, -0.6390] A21 = (-co, -0.3927]

A 1 2 = (-0.6390,0.1066] and A2 2 = (-0.3927,-0.1447]

A 1 3 = (0.1062,0.6226] A23 = (-0.1447,0.3624]

A14 = (0.6226,oc) A24 = (0.3624, oo)

and

E[IX - 12 ] = 0.00894,

which is about a 34.3% reduction in the mean square error. We should note that after only

S passes the mean square error was reduced by 33.5%. These results are almost identical

to those in Example 3; this is not surprising, since taking a = 1 in (13) implies that fw 2 is

nearly flat, and hence W2 is nearly uniform as in Example 3.

Example 6. Same as Example 5, except we replace a = 1 by a = 32. We initialize the

partition of each sensor to the Lloyd-Max partition, which is

A11 = (-o0, -0.4546] A 21 = (-oo, -0.4481]

A 12 = (-0.4546,0] and A22 = (-0.4481,0]

A13 = (0,0.45461 A23 = (0,0.4481]

A 1 , = (0.4546,oo) A 2 , = (0.4481,oo).

Taking C = SN(A), we find that

E[IX- *12] = 0.0136.



After 10 passes through the loop in Algorithm 1, we find that

All = (-oo, -0.6374] A21 = (-oc, -0.3852]

A 12 = (-0.6374,0.1462] and A22 = (-0.3852,0.0913]

A 13 = (0.1462,0.6160] A23 = (0.0913,0.3496]

A14 = (0.6160,oo) A24 = (0.3496,oo),

and

E[IX - 1 •X = 0.00797,

which is about a 41.4% reduction in the mean square error. We should note that after only

2 passes the mean square error was reduced by 37.2%.

Example 7. Same as Example 5, but we change the density of W2 to
0 .3419 [5 _ c s 3 w ] I w bb 42b ' w - '

fm 2 (w) = (14)

( 0, otherwise,

where b = 0.11. We initialize the partition of each sensor to the Lloyd-Max partition; i.e.,

All = (-:, -0.4546] A21 = (-cc, -0.4445]

,412 = (-0.4546,0] and 4 22 = (-0.4445,0]

A 1 3 = (0,4546] A23 = (0,0.4445]

A 14 = (0.4546,oo) A24 = (0.4445,oo).

Taking C = SN(A), we find that

E[ X - 1;21 = 0.01358.

After 15 passes through the loop in Algorithm 1, we find that

All = (-oo,-0.6156] A2 1 = (-oo,-0.3570]

A 1 2 = (-0.6156,-0.1088] A22 = (-0.3570,0.13281and

A, 3 = (-0.1088,0.6234] A23 = (0.1328,0.3721]

,414 = (0.6234,oc) A24 = (0.3721, oo),

. I



and

E[ IX -,'- 2 ] = 0.00938,

which is about a 31% reduction in the mean square error. We should note that after 3 passes

the mean square error was reduced by 25.5%.

Example 8. Let n = 2 sensors, N = 8 (3-bit quantizers), where this time X has the density

function shown in (14) where b = 2. We take WI, W2 to have the same density function of X,

except we replace b = 2 by b = 1. We initialize the partition of each sensor to its Lloyd-Max

partition, which in this case is (k = 1,2)

Aki = (-,.-1.3273]

Ak2 = (-1.3273, -1.2419]

A k3 = (-1. 2419,-1.0374]

Ak 4 = (-1.0374,0]

4k5 = (0,1.0374]

Ak6 = (1.0374,1.2419]

Ak7 = (1.2419,1.32731

Ak8 = (1.3273,oo).

Taking C = SN(A), we find that

E[IX- 12•1 = 0.18129.

After only 5 passes through the loop of Algorithm 1, we find that

All = (-oo,-2.1802]

A12 = (-2.8102, -1.79501 U (-1.3697, -0.8177]

A13 = (-1.7950, -1.3697] U (-0.8177, -0.4109]

A 1 4 = (-0.4109,0.0005686]

A1 5 = (0.0005686,0.4130]

A 1 6 = (0.4130,0.8200] U (1.3739,1.7979]

A 17 = (0.8200, 1.3739] U (1.7979,2.1834]

A18 = (2.1834, oo)

I.D



A21 = (-oo,-2.1056]

A 22 = (-2.1056, -0.6504]

A23 = (-0.6504, -0.3207]

A2 4 = (-0.3207, -0.1805]

A25 = (-0.1805,0.2863]

A2 6 = (0.2863,0.6240]

A27 = (0.6240,2.0960]

A28 = (2.0960, oc)

and

E[jX - kI2 ] = 0.12655,

which is a reduction of about 30.1% in the mean square error. We should also point that the

value 0.12655 is a 31.7% reduction of the minimum mean square error obtainable by linear

estimation, which is 0.18534.

5. Conclusion

The best estimate of some quantity X, in a distributed estimation system, given some

measurements say Y.,..., Y,•, is the conditional expectation of X given Y 1,..., Y,, denoted

E[XjY1 , . _Y•]. However, the functional form of E[XIY1 ,. .. ,Y, ] as afunction of Y1,...,Y,,

is often difficult, if not impossible to determine and it is not possible to transmit real-valued

quantities without distortion. In this report we solved those problems by showing the feasi-

bility and efficiency of an algorithm that was specifically directed to address the distributed

nature of the system. In Section 3 we presented the constrained estimator approach, which

is an algorithm for quantization for distributed estimation systems. The numerical results

in Section 4 indicated that in general the constrained estimator performs better than the

Lloyd-Max estimator when N is small (N = 4, 2-bit quantizers) as shown in Examples 2,3,

and 5-7, however when N is large (N = 64, 8-bit quantizers) the constrained estimator does

not improve the results of the Lloyd-Max estimator significantly as shown in Example 4.

An other conclusion can be drawn from the numerical results. The constrained estimator

is a nonlinear estimator as pointed out in Section 2. This is shown in Example 4 and more



clearly in Example 8. In fact, the nonlinear constrained estimator performs better or in the

worst case as well as the linear estimation provided that N is chosen appropriately.



Appendix A. An Overview of the Code

In this section we discuss in detail the code that was used to implement the constrained

estimator algorithm presented in Section 4. But first we turn our attention to the few

changes that we made to the equations presented in Sections 3 and 4. In view of the

structure described in (12), it is convenient to express the quantities in (5), (6), and (9) in

terms of the univariate densities fx(x) and fw,(w). We find that

P(Yk•E A) = P(Wk E A-x) f (x)dx, (15)

P( YkEA.4, Y1 E B)= P(WjkEA-x)P(W EB-x)fx(x)dx, k#1, (16)

E[1AA(Yk) f = P(Wk I .4- x)fx(x)dx, (17)

J P(Wk E A- x) fw (y - x) fx(x)dx
P(YkE A IY = Y) = -y (, k#l, (18)

Sx fw,(y - x) fx(x))dx
E[X IYt =yj = 0 fy(y) (19)

where, of course,

f(y = fw,(y - x) fx(x) dx, (20)
(00

and

P(Wk; EA-x) = L (w)dw.
JA

In particular, if A = (a, b], A - x= (a - x, b - x], and

fb-z

P(Wk A-x) = fw (w)dw. (21)

Now that we mentioned the few changes needed to make the implementation of our

algorithm easier, we are ready to discuss the code used in detail. As shown in Algorithm 1,



the first element that is needed to implement this algorithm is an arbitrary initial partition

A. The partition A is defined as:

A =

where {Ak,},•I1 is a partition for sensor k. We call Aki the ith subpartition of sensor k.

We now discuss the procedure that read and stored the initial partition A. The initial

partition is stored in the file start. The lower and upper limits of the intervals of each

subpartition 1 through N are listed in succession and are separated by the pair -1, -1. This

is repeated for each sensor 1 through n. We should note that the interval (-oo, oo) is stored

as the pair 0, -1 while the interval (-oo, a) is stored as the pair a+ 2, a, and (a, oo) is stored

as the pair a, a - 3.

For example, if n = 1 and N = 2 then the partition A is defined as A =

and if All = (-oo,3] U (4,oo) and A 1 2 = (3,4], then the file start will contain the

following liles:

5, 3

4, 1

-1, -1

3, 4

-1, -1

This listing, available in file start is read and then stored in a 3-dimensional array AR(I, J, K)

by the routine ReadAR. The first index I of the array AR(I,J,K) indicates which of the

sensors from 1 through n we are dealing with, the second index J (J=1,...,N) indicates

which subpartition we are pointing to, and finally, the third index K indicates if the number

stored is the upper or lower endpoint of an interval of a subpartition at J of sensor I. For

example, the set All described above in the file start will be stored in AR as follows:

AR(1,1,1) = 5 AR(1,1,3) = 4

AR(1,l,2) = 3 AR(1,1,4) = 1,

and A12 will be stored in AR as follows:

AR(1,2,1) = 3

AR(1,2,2) = 4.

A4



The routine ReadAR reads the file start and returns the array AR containing the initial

partition. The key for the proper operation of the routine is the knowledge of the number

of sensors, n, denoted by NS in the programs, and knowledge of the number of partitions,

N denoted by N in the programs. The routine reads every pair of elements from start and

stores them in AR(I,J,K) and AR(I,J,K+1), this process is repeated until a pair of -is

occurs indicating the subpartition is updated and J becomes J+1 and the next subpartition

is read. When all subpartitions of intervals of a sensor I are read (J=N) and stored in AR, the

index indicating the number of sensors is updated, and I becomes I+1. The whole process

is then repeated until I=NS; at this point the partition A has been stored in AR.

Now that the initial partition A is read and stored in the matrix AR(I,J,K), the next

step is to compute the initial elements {Cki}. To do that we generate the two matrices R

and r as defined in (4). In the programs, R is called R and r is called Mean.

The routine GenR(R) returns the matrix R defined in (4) using the routine SumP(L,J,K,I)

that generates the moments shown in (5), (15), and (16). Two nested do loops were used;

the first loop generated all the elements of R and stored them in the N 2n2 x 1 matrix Temp2,

the second do loop stored appropriately the elements of Temp2 in the Nn x Nn matrix R.

The routine GenM(Mean) returns the matrix r denoted as Mean using the routine SusmM

(K,I) that generates the moments shown in (17). In this case one nested loop is used, this

nested do loop will generate the Nn x 1 matrix Mean.

Now that the matrices R and Mean are available, the routine Solve(R,Mean,C,MSE)

computes the coefficients {ck,} stored in the n x N matrix C, where each row indicates

a different sensor and the elements of a given row k are the coefficients of the sensor k

that minimizes E[ IX - Xf2 ]. This routine also returns the mean square error MSE, which

is computed using (11). Since the normal equations used for obtaining the {ci} are ill

conditioned, we employed the singular-value decomposition (SVD) as discussed in [3]. To

obtain the SVD of R we used the NAG routine F02WEF.

Finally, the routine SN(AR,C) will return the n x N matrix C containing the different

elements {ck,} obtained by solving the mentioned linear estimation problem defined in (4)

given the initial partition A stored in the array AR. This routine is used in the main program

and is equivalent to the procedure SN in Definition 1.



We have just shown how to find Lhe elements {ckiI} that will minimize E[ IX - X12 ] given

a partition A using the procedure SN(AR,C). The next step is to present the procedures that

we used to improve a partition A. As we seek to improve a partition A given a matrix C,

we have a major hurdle to overcome. The first part of that hurdle is the computation of the

function rj(y) in (9), the second part is to characterize the inverse images in (10).

The function ri(y) is obtained by RofL(Y); RofL(Y) calls two different routines, EC(Ind,Y)

and CP(Y). The function EC(Ind,Y) will compute E[X I Y, = y] shown in (19). The second

part of (9), which depends on the {ck,}, is computed by CP(Y). To compute P(Yk E Akj I Y, =

y) defined in (18), SumcP(K,J,Y) is used. Since a given subpartition Ak, could be a union of

intervals, SumcP computes the conditional probability at each interval using Fun4(LL,UL,Y)

and adds the results together.

Before explaining how the set defined in (10) was obtained to best characterize the

partition A, we discuss two routines that were used in this process, Levels and Root. The

routine Levels computes the different levels needed to generate the partition {AkiN for a

given sensor k. If there are N subpartitions we will have N - 1 levels all stored in an array

Lev(I) defined as:

Lev(1) = C(sensorindex, I)+C(sensorindex, I+1)
2

where I = 1,...,N - 1.

Given the function RofL(Y) and an interval [LLUL] the routine Root will find a simple

root in this interval. If more than one root exists in a given interval, an error message is

issued. To compute the roots the NAG routine C05ADF is used.

To obtain a new partition A, two main routines are used: ListofZero and Newpart.

Listof Zero will find all the zeros of RofL(Y) - Lev(I). To do this, we sample r1(y) for Numpt

values of y. The values of y are stored in the array Yp. The values of r1(y) are stored in

the array Rp. The routine ListofZero will search for a change of sign of Rp(J)-Lev(I).

A change of sign is assumed to indicate that at most one root exists in the interval Y(J)

and Y(J+i). This assumes that enough samples of rj(y) are taken. The zeros are stored

in the array Zero(I,K), where the index I indicates to which level the zero corresponds.

In additiot, the nearest value to the left and to the right of rj(y) are stored respectively

-,,



in Testpt (I,K, 1) and Testpt (I,K, 2). The number of zeros for each level is stored in the

array Numof Zero.

The routine Newpart will use the list of the zeros of the different levels and the test points

to obtain the new partition A. The test points will be used to take a peak at the left or

right of a zero and will enable us to determine if the range of rj(y) in an interval formed by

two consecutive zeros lies above or below a certain level or between two levels. To determine

the intervals of y for which rj(y) is between two levels, we will first merge in order using

MergeSort the zeros and their corresponding test points of the two levels in the arrays Mzero

and Mtestpoint respectively and then find the desired intervals.

Finally the routine UL(k,AR) where k = 1,..., n will return a new partition of {Akj}$__

denoted by {Akij,}Nv= and stored in the array AR given the N x n array C that contains the

different elements Ck1 . This routine is used in the main program. It plays the role of U1(C, A)

defined in Definition 2 and used in Algorithm 1.

To study the performance of Algorithm 1 we computed the mean square error E[ IX- X 121

defined in (11) each time the partition A and its corresponding coefficients cki are updated.

The latest mean square error is compared with the previous value. In case of any substantial

improvement another iteration is taken, otherwise we stop running the program.



Appendix A. A Listing of the Code



c define. f

c This variabLe stores the Mean Square of the distribution
c of X U-(-A,A).

DOUBLE PRECISION VARX
COINON/BLOCK45/VARX

c NS --- > number of sensors
c M --- > number of partitions
c MAX=2*SUBP, where SUBP is the number of supartitions
c The data of the variables NS,N,SUBP are read
c respectiveLty from the file init.dat.

INTEGER NS,N,MAX
COMMON/BLOCK5/NS,, MAX

c Al =NS*N and BI=NS*NS*N*N
INTEGER A1,B1
COMMON/BLOCK6/A1,B1

c COND --- > indicates if the conditional probabilities are
c conditioned on Sensorl or Sensor2 (ZI or Z2).
c SNUNB---> indicates the SENSOR NUMBER we are dealing with
c If we want the LLOYD-MAX partition for SENSOR 2
c then SNUNB is 2.
c If we are running the algorithm then SNUMB=NS.

INTEGER CONDSNUMB
COMMON/BLOCK7/COND
COMMON/BLOCK25/SNUMB

c NNS --- > MAXIMUM number of sensors
c NN --- > MAXIMUM number of partitions
c NSUBP---> MAXIMUM number of subpartitions

INTEGER NNS,NN,NSUBP,NMAX,AS,NA
PARAMETER (NNS=2,NNM=,NSUBP=30,NMAX=2*NSUBP,AS=NNS*NN,NA=AS*AS)

c The variable LEVEL is needed to find all the values of
c y for which the equation LEVEL=RofL(y) holds.

DOUBLE PRECISION LEVEL
COMMON/BLOCK23/LEVEL

c LMAX -- indicates if we are computing the LLOYD-MAX partition
c or not,LMAX =.TRUE. if we are ,LMAXa.fatse if we are not

LOGICAL LMAX
COMMON/BLOCK24/LMAX

c Rp is an *4rray that contains the values of RofL at specific
c values of y.Yp is an array that contains the corresponding
c values of y for Rp.
c The MAXIMUM number of points at which RofL can be evaluated
c is MAXPT.

INTEGER MAXPT
PARAMETER (MAXPTz6000)
DOUBLE PRECISION Rp(MAXPT),Yp(MAXPT)



CMIOI/U/LOCK100I/Rp, Yp

c MLNUPT indicates the number of points (Yp,Rp) is taken
INTEGER NMUPT
COUGON/BLOCKI¶1/WAUNPT

c Each Level has a certain nu.ber of ZEROS stored in the
c array ZERO.ZN will be the maximum number of Levels
c allowed and ZNAX is the mtaximum number of zeros for
c a given Level.

INTEGER ZN,ZMAX,,INTER
PARA•ETER(ZN=NN,ZNAX=30,INTER=2)

INTEGER PIAXNINTER
PARCMETER(MKAX=2*ZMAX,NINTER=2)

integer azero, nWcot, nYcol
parameter (azero=O, nWcoL=5, nYcot=2)

C

integer Lower, upper, meani, ms, height
parameter (lower=1, upper=2, meanl=3, ms=4, height=5)

C

double precision Winfo(azero:NNS,nWcol), Yinfo(l:NNS,nYcot)
double precision Ml, ull, LL2, u12, yy
common /select/ Winfo, Yinfo, Lil, uLl, LL2, u12, yy

c

integer igtype, sl, s2
common /isetct/ igtype, sl, s2

c
integer corr, jpr, unipr
parameter (corrzi, jprzZ, unipr=3)

c
integer cndprb, cndexp, convoL
parameter (cndprbal, cndexp=2, convot=3)

c
double precision reterr
comnmon/bock26/reterr

c firspt is the first point at which RofL is evaluated
c Lastpt is the last point at which Rofl is evaluated

double precision firstpt,lastpt
comamon/btock27/firstpt, Lastpt

c constant MC
double precision MC,varx,varz
cowmonlbiockZlMC,varz



c MAINU.F

c ..... MNAIN ....... MAIN ....... MAIN ....... MAIN. MAIN

c This is the main program.First the program
c calls the routine INITDI, this routine provides the
c information of the different distributions that are
c needed and stored in arrays available to other routines.
c 1)if 0 is entered the algorithm is run with a number of
c NIT iterations,if we want to continue where we Left off
c (after NIT iterations),the Last partition generated by
c the program is made available in file "start1".
c 2)If 1 or 2 is entered the program will find the LLoyd-Max
c partition for sensor 1 or 2 those partitions are available
c in "startl" or "start2N.
c This is the following steps taken by MAIN
c 1) The initial partition is stored in the array AR
c using ReadAR(AR).
c 2) The routine SN(AR,C,MSE) is used to compute the
c optimal coefficients for a given partition
c and are stored in the array C.This routine
c also computes the mean square error stored in MSE.
c 3) To find a better partition we iterate a
c a fixed number of times (NIT).After each
c iteration an updated partition along with its
c optimal coefficients is computed using UL(COND,AR)
c and SN(AR,C,MSE) respectively.
c
c The program will used two input files.
c 1) distr.dat --- > Contains the distribution informations
c 2) init.dat --- > Indicates NS,N,SUBP,RELERR,NIT,TEST and
c DELTA respectively.

PROGRAM main

INCLUDE 'define.f'
INCLUDE 'Carray.f'
INCLUDE 'ARarray.f'
INCLUDE 'MEANarray.f'
INCLUDE 'NUarray.f'
INCLUDE 'TEMP2array.f'

INTEGER COUNT,TEST,I,J,K,IA,NIT,NULIBPT,NPT,KL
DOUBLE PRECISION Yx,DUM,Xl,X2,Y1,Y2,SUBP,NSE
DOUBLE PRECISION MSI,DELTA,RofL,PT
EXTERNAL ClearAR,ReadAR,UL,NSI,LOAD,SNINITDI
EXTERNAL CreateRofL,RofL

OPEN (UNIT=81,FILE='init.dat',STATUS='old,)
READ(81,*) NS,N,SUBPRELERR
READ(81,*) NIT,TEST,DELTA
READ(81,*) MC
CLOSE (UNIT=81)
WRITE(*,*) 'Please Enter the Ntmber of ITERATIONS .'

WRITE(*,*) 'NIT=', NIT
c READ(*,*) NIT

WRITE(*,*)
MAX=2*SUBP
WRITE(*,*) 'The Maximumnu aer of Sensors is ',NNS
WRITE(*,*) 'The Maximum ntmber of Partitions is ',NN
WRITE(*,*) 'The Maximm nuber of Subpartitions is ',NSUBP
WRITE(*,*) 'The Number of Sensors is ',NS
WRITE(*,*) 'The Number of Partitions is ',N
WRITE(*,-)



CALL INITDI

6WRITE(*,*)
WRITEC*,*)'ENTER 0 to RUN the ALGORITHM'
WRITE(*,*)IENTER 1 to obtain the LLOYD-M4AX for SENSOR 1'
WRITE(*,*)IENTER 2 to obtain the LLOYD-MAX for SENSOR 2'
WRITE(*,*) 'TEST=', TEST

c READ(*,*) TEST
Xl=Winfo(ZER0,1MS)
X2=Winfo(TEST ,MS)
Yl=Winf o( ZERO, MEAN 1)
Y2=Winfo(TEST,MEAN1)
IF (TEST.EQ.O) THEN

LMAX=. FALSE.
VARXzX 1

ELSE
LMAX=. TRUE.
COND=TEST
NSzl
VARX=X1 + X2 + 2*Y1*Y2

END IF
Al =NS*N
81=Al*Al
CALL CLearAR(AR)
CALL ReadAR (AR)

WRITE(*,*) ' The RELEAR is:',RELERR
CALL SN(AR,C.MSE)
WRITE(*,*) 'The initial MEAN SQUARE ERROR is: ',MSE
WRITE(*,*)
Do 11 K=1,NS
If (LMAX) THEN

KL=TEST
ELSE

KL=K
END IF
Xl=Yinfo(KL,LOWER)
X2=Y mto(KL .UPPER)
WRITE(*,14) I(L
WRITE(*,12) KL,Xl,X2
11 CONTINUE
WRITE(*.13) DELTA
14 FORMAT('For Sensor',12,':')
12 FORMAT(3X,1Rof',Il,'(Y) samp~led for: ',F7.4,1 Y <',F7.4)
13 FORMAT('The INCREMENT DELTA used for both cases is:',FB.5,/)
COUNT =0

DO 55 1a=1,NIT
COUNT=COUNT+1
WRITE(*,*) '******,count,' ITRTO********

00 15 K=1,NS
IF (LMAX) THEN

CONOzTEST
SNUMBz1

ELSE
COND~k

SVlUqSk
END IF
J=1
Xl=Yinfo(COND,LOWER)
X2=Y inf oCCOND ,UPPER)
PTz(X2-Xl )/f1LTA



NMUMPTzOINT(PT)
NPTzNUMBPT .1
OPEN(uNIT:21 ,FILE2'out¶' ,STATUS='UNKNOWN')

c WRITE(*,*) 'Data for RofL is being compuited. .1
DO 10 Izl,NPT

Yx=Xt + DELTA*(1.1)
IF ((Yx.GT.Xl).AND.CYx.LT.X2)) THEN

Rp(J)aRofL(Yx)
Yp(J)UYX
IF (J.LE.MAXPT) THEN
WRITE(21,32) Yx,Rp(J),J,I

32 FORMAT(F13.6,2x,F13.6,2x14,2x,4)
ELSE
WRITE(*,*) 'ERROR IN DIMENSION FOR Rp ARRAY'

END IF
J=J+1

END IF
10 CONTINUE

c write(*,*) 'ENTER ANY NUMBER TO AdTINUE.'
c read(*,*) DUN

CLOSE (UNIT=21)
NUMPT=J-l
CALL Ut(SNUMB,AR)

15 CONTINUE

CALL SN(AR,C,MSE)
WRITE(*,*) 'The MEAN SQUARE ERROR is: ',MSE
WRITE(*,*)

55 CONTINUE
STOP
END
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c GEN.F

c .. read data of partition into a 3-0 arrray AR..
c This routine read from a file "start" the data of a given
c partition and store into a 3-1 array AR.The index I of the
c matrix AR represent the sensor number,the index J represent the
c the subpartition rorufer for a given sensor I finally the indices
c K and K+1 indicate the tower and upper values respectively of an
c interval of the subpartition J of a sensor I.A subpartition J of
c a given sensor I can be a union of intervats.When reading from
c "start" each subpartition J is separated by the two consecutive
c numbers of -1.

SUBROUTINE ReadAR (AR

INCLUDE 'define.f'

DOUBLE PRECISION AR(NNSNN,NMAX),LL,UL
INTEGER I,J,K

OPEN (UNIT=1O,FILE='start',STATUS='otd,)
DO 10 I=1,NS

DO 20 J=1,N
K=I

30 CONTINUE
READ(1O,*) LL,UL

AR(IJ,K)=LL
AR(I,J,K+1)=UL
K=K+2

IF ((UL.EQ.-1.0DO).AND.(LL.EQ.-1.0DO)) THEN
AR(I,J,K-2)=O.DO
AR(I,J,K'I)=O.DO

GO TO 20
END IF

GO TO 30
20 CONTINUE
10 CONTINUE
RETURN
END

c
C ......... INITIALIZE AR TO ZERO ...........

SUBROUTINE CtearAR (AR)

INCLUDE 'define.f'

INTEGER I,J,K
DOUBLE PRECISION AR(NNS,NN,NMAX)

00 100 I=I,NS
DO 200 J=1,N

DO 300 K=1,MAX
AR(I,J,K)=O.O0O

300 CONTINUE
200 CONTINUE
100 CONTINUE
RETURN
END

C This routine returns the matrix NU(I,J).For example if
c N(I,J)=10 it means that a subpartition J of a given sensor
c I is formed from the union of five different intervals.



c This matrix wilt be used
SUBROUTINE COUNTP (MU)

INCLUDE 'define.f'
INCLUDE 'ARarray.f'

INTEGER NU(NNS,NN)
INTEGER L,J,KB

DO 20 L=1,NS
DO 30 J=1,N

NU(L,J)=O
KB=1

10 CONTINUE
IF (AR(L,J,KB).NE.AR(L,J,KB+1)) THEN

IF (KB.LT.MAX) THEN
NU(L,J)=NU(L,J) +2

KB=KB+2
GO TO 10

END IF
END IF

30 CONTINUE
20 CONTINUE
RETURN
END

c Given two subpartitions Aki and ALj ELI (Yk )I (YL)] is computed
c as follows:
c 1- If k=1 and i=j then
c P(Yk Aki) is computed.Since Aki the subpartition
c I of a sensor K can be a union of intervals the
c probability of Yk along each interval is computed
c and then summed together to perform this correctly
c the number of intervals was needed (NU).
c P(Yk Aki) was computed using PG.
c 2- If k=( and i NE j then
c the routine is assigned the value ZERO
c 3- If k NE ( then
c P(Yk Aki,YL Ali) is conputed.
c P(Yk Aki,Yt ALj) was computed using JPG.
c EUi (Yk )I (YI)] is computed and stored in the matrix
c SUMP(L,J,K,I), this matrix is needed to compute the coefficients
c contained in the matrix C.

c COMPUTE SUM OF PROBABILITIES IF WE HAVE UNION OF INTERVALS...

DOUBLE PRECISION FUNCTION SUMP(LJ,K,I)

INCLUDE 'define.f'
INCLUDE 'ARarray.f'
INCLUDE 'NUarray.f'

DOUBLE PRECISION RES,ANS
INTEGER NU1,NU2,NXMX,I,J,K,L
DOUBLE PRECISION JPG,PG
EXTERNAL JPG,PG

NUI=NU(L,J)
NU2=NU(K,I)
RES=O.OO0
IF (L.EO.K) THEN

IF (I.EQ.J) THEN
DO 15 NX=1,NU1,2

ANS=PG(AR(L,J,NX),AR(L,J,NX+1),L)
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RES=RES+ANS
15 CONTINUE

SUMP=RES
ELSE

SUMP=0.00
END IF

ELSE
DO 30 MX1,NU1,2

00 40 NX-I,NU2,2
ANS=JPG(AR(L,J,MX),AR(L,J,NX+1),AR(KI,MX),

* AR(K,I,NX+I),L,K)

RES=RES+ANS
40 CONTINUE
30 CONTINUE

SUMP=RES
END IF
RETURN
END

c This routine wiLL co"lpute E[XI (Yk)] the integral of
c fyk(y)*E[X/Yk=Y] over the subpartition Aki.It wiLL use
c MEANX a routine that computes the integral of fyk(y)*E[X/Yk]
c over a given intervaL. Note that Aki is formed of a union of
c intervals ,knowing those intervals (AR),their number (NU) and
c using MEANX E[XI (Yk)] is computed and stored in the matrix
c SUNN(I,J) index I indicating the sensor and J the subpartition
c SUMI4 is needed to compute the coefficients contained in the
c matrix C.
c
c .......... sum of means ...........

DOUBLE PRECISION FUNCTION SUMN(I,J)

INCLUDE 'define.f'
INCLUDE 'ARarray.f'
INCLUDE 'NUarray.f'

INTEGER NU1,NX,I,J
DOUBLE PRECISION RES,ANS
DOUBLE PRECISION MEANX
EXTERNAL MEANX

NUI=NU(],J)

RES=0.000
DO 15 NX=1,NU1,2

ANS=MEANX(AR(I,J,NX),AR(I,JNX+1),I)
RES=RES+ANS

15 CONTINUE
SUM=RES
RETURN
END

c ............. generate the R matrix...........
c This routine wilt generate the R matrix (a symmetric matrix)
c needed to solve the optimal coefficients.
c The equation that is needed to be solved is:
c Rc=meen
c where c is the mtrix that contains the optimaL coefficients.

SUBROUTINE GENR (R)

INCLUDE 'define.f'
INCLUDE 'ARarray.f'
INCLUDE 'NUarray.f'
INCLUDE 'TENP2array.f'



INTEGER II,JI,I,J,K,L
DOUBLE PRECISION R(ASAS)
DOUBLE PRECISION SUMP
EXTERNAL SUMP

11=0
DO 10 L=1,NS

DO 20 J=1,N
11=11+1
J1=O

DO 30 K=1,NS
DO 40 I=I,N

J1=J1+1
IF (J1.GE.I1) THEN

R(I1,J1)=SUMP(L,J,KI)
IF (R(I1,J1).NE.O.OdO) THEN

c write(*,100) R(I1,J1),I1,J1
c 100 FORMAT (F16.12, ' R(',13,1,1,I3,1)1

END IF
ELSE

R(I1,J1)=R(J1,I1)
END IF

40 CONTINUE
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

c ........ generate mean matrix ...............
c This routine wiLL generate the other matrix needed
c to solve for the optimal coefficients the mear natrix.
c The equation that is needed to be solved is:
c Rc=mean
c where c is the matrix that co.,ains the optimal
c coefficients.

SUBROUTINE GENM (MEAN)

INCLUDE 'define.f'
INCLUDE 'ARarray.f'
INCLUDE 'NUarray.f'

INTEGER IND,J,L
DOUBLE PRECISION MEAN(AS)
DOUBLE PRECISION SUMM
EXTERNAL SUMM

IND=1
DO 10 L=1,NS

DO 20 J=1,N
MEAN(IND)=SUNM (L,J)

c write(*,100) MEAN(IND),IND,l,j
c 100 format(F16.6,' MEAN(',13,')',213)

IND=IND+1
20 CONTINUE
10 CONTINUE

WRITE(*,*)
RETURN
END

c ............. SOLVE LINEAR EQT ..................
c This routine wilt solve the equation: Rc--Mean

3'7



c c will be the matrix that contains the optimal
c coefficient.To obtain those coefficients the
c SVD approach was used.
c The NAG routine FO2WEF used performs on R
c the matrix factorization known as the singular value
c decomposition,SOLVE also computes the minimized mean
c square error stored in MSE.

SUBROUTINE SOLVE (R,MEAN,C,MSE)

INCLUDE 'define.f'

INTEGER LDR,LDM,LDPT,NCOLM
PARAMETER (LDR=AS,LDM=AS,LDPT=AS,NCOLM=l)
INTEGER LWORK
PARAMETER(LWORK=AS**2 + 5*(AS-1))
INTEGER I,IFAIL,J,IND
LOGICAL WANTP,WANTQ

DOUBLE PRECISION R(LDR,AS),MEAN(AS),C(NNS,NN),CI(AS),DUMNY(1)
DOUBLE PRECISION WORK(LWORK),SV(AS),PT(LDPT,AS),MEANT(LDM)
DOUBLE PRECISION RES,MSE,TAU,S,FO6EAF
EXTERNAL FO6EAFFO2WEF

DO 30 I=1,A1
MEANT(I)=MEAN(I)

30 CONTINUE
UNIQUE=.TRUE.
WANTQ=.TRUE.
WANTP=.TRUE.
IFAIL=O
CALL FO2WEF (A1.A1,R,LDR,NCOLM,MEANT,LDMWANTQOUMMY,1,SV,

* WANTPPT,LDPT,WORK,IFAIL)
IF (IFAIL.NE.O) THEN
write(*,*) I ERROR IN SVD DECOMPOSITION'
END IF
OPEN (UNIT=1,FILE='svd.dat',STATUS=,unknown')
WRITE(1,11)
WRITE(1,101) (SV(I),I=1,A1)
WRITE(1,12)
DO 10 I=1,A1

c WRITE(1,101) (PT(J,I),J=1,A1)
10 CONTINUE
WRITE(1,13)
DO 20 1=1,A1

cWRITE(1,101) (R(I,J),J=1,A1)
20 CONTINUE
WRITE(1,14)
WRITE(I,101) (MEANT(I),I=1,A1)
CLOSE (UNIT=l)

c TAU is the absolute error tolerance
TAU=RELERR*SV(A1)
DO 65 1=1,A1

IF (SV(I).LT.TAU) GOTO 75
NSV=I

65 CONTINUE
75 CONTINUE
write(*,*) NSV,' singular values are -=',TAU
write(*,*) 'SVMItS- ',SV(1)
write(*,*) 'SVLAST= ',SV(NSV)
write(*,*) 'SVJMAX- ',SV(A1)
DO 50 1=1,A1

Cl(I)=O. 000
DO 40 J=1,NSV
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S=NEANT(J)/SV(J)
C1()=C1(l) ÷PT(J,I)*S

40 CONTINUE
50 CONTINUE

c WRITE(*,*) 'The solution to the system is:'
c WRITE(*,100) (C1(I),I=t,A1)

c Dot Product of the two vectors C1 and MEAN
RES=FO6EAF(AS,C1,I,MEAN,1)
MSE=VARX-RES

IND=1
DO 15 I=1,NS

DO 25 J=1,N
C(I,J)=C1(IND)
IND=IND+I

25 CONTINUE
15 CONTINUE
100 FORMAT(4(1X,D12.4))
11 FORMAT(/' SINGULAR VALUE')
12 FORMAT(/' RIGHT-HAND SINGULAR VECTORS BY COLUMN')
13 FORMAT(/' LEFT-HAND SINGULAR VECTORS BY COLUMN')
14 FORMAT(/' VECTOR Q"I*MEAN ')
101 FORMAT(5(1X,D12.4))
RETURN
END

c This routine generates the matrix c that contains
c the optimal coefficients given a partition A.
c This routine is used in the MAIN program.

SUBROUTINE SN(AR,CMSE)

INCLUDE 'define.f'
INCLUDE 'MEANarray.f'
INCLUDE 'NUarray.f'

DOUBLE PRECISION R(AS,AS),C(NNS,NN),AR(NNS,NN,NMAX),MSE
EXTERNAL COUNTP,GENM,GENR,SOLVE

CALL COUNTP(NU)
CALL GENM(MEAN)
CALL GENR(R)
CALL SOLVE(R,MEAN,C,MSE)
RETURN
END

c .......... sum of conditional prob ...........
c This routine is needed to compute RL(Y).
c It computes the conditional probabilities for
c a given subpartition.

DOUBLE PRECISION FUNCTION SUMCP(I,J,Y)

INCLUDE 'define.f'
INCLUOE 'ARarray.f'
INCLUDE 'NUarray.f'

INTEGER I,J,IND
DOUBLE PRECISION RES,ANSY
INTEGER NU1,NX
DOUBLE PRECISION FUN4



EXTERNAL FUN4

NUI=WNU(I,J)
RESzO.ODO
I ND=COND

DO 15 NXsINUl,2
ANSaFUN4(AR(IJ,NX),AR(I,J,NX+1),Y,I,IND)

c write(*,*) 'IrC',i,',',j,',',nx,,),, ar(i,j,nx)cwrite(*,*) 'ar(',if',0j,',',nx+j,,),, ar(i,j,nx+l)

RES=RES+ANS
15 CONTINUE
SUNCP=RES

c Write(*,*) res,' res I
RETURN
END

c This routine is needed to compute Rt(Y).

DOUBLE PRECISION FUNCTION CP (Y)

INCLUDE 'define.f'
INCLUDE 'Carray.f'
INCLUDE 'ARarray.f,
INCLUDE 'NUarray.f,

INTEGER IND,J,K
DOUBLE PRECISION Y
DOUBLE PRECISION RES,ANS
DOUBLE PRECISION SUNCP
EXTERNAL SUMCP

IND=SNUNB
RES=O.ODO
DO 10 K=INS

IF (K.NE.IND) THEN
DO 20 J=I,N

ANS=SUMCP (K,J,Y)*C(K,J)
RES=ANS+RES

c write(*,*) c(kj), sumcp(k,j,y),, c(k,j)'
20 CONTINUE

END IF
10 CONTINUE
CP=RES

c write(*,*) res.' fres'
RETURN
END

c .................. RL(Y) .......................

c This routine computes RL(y).

DOUBLE PRECISION FUNCTION RofL(Y)

INCLUDE 'define.f'
INCLUDE 'ARarray.f,
INCLUDE 'Carray.f'
INCLUDE 'NUsrray.f'

INTEGER IND
DOUBLE PRECISION Y
DOUBLE PRECISION CP,EC
EXTERNAL CP,EC



I NDzCONO
c IF (LNAX) THEN

RofL=Y
C ELSE

RofL=EC(IND,Y) -CP(Y)
c END IF

RETURN
END

c ........................ RofLtev .............................

DOUBLE PRECISION FUNCTION RofLtev(Y)

INCLUDE 'define.f'

DOUBLE PRECISION Y,RofL
EXTERNAL RofL

RofLiev=RofL(Y) - LEVEL

RETURN
END
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c ROOTFB.F

c This function finds one of the simple roots of R(Y) given
c the interval CLt,utl. If more than one root exists in the
c given interval an error message is issued.
c The subroutine COSADF from the NAG Library is used.

DOUBLE PRECISION FUNCTION ROOT(LLoUL,RofL)

DOUBLE PRECISION LL,ULRofL,EPS,ETA,X
EXTERNAL RofL,CO5ADF
INTEGER IFAIL

EPS=1.0D-8
ETA=O.ODO
IFAIL:1
CALL C05ADF(LL,UL,EPS,ETA,RofL,X,IFAIL)
IF (IFAIL.GT.O) THEN

WRITE(*,*) IFAIL ,' ERROR CHECK C05DAF in ROOT'
END IF
ROOT=X
RETURN
END

c This routine computes the different Levels.
c The assumption in this algorithm is that C(L,1)<.... <C(l,N)
c this is why the different elements of the n X N matrix C
c are sorted in a increasing order before the computation of
c the corresponding Levels.

SUBROUTINE LEVELS (LEV)

INCLUDE 'define.f'
INCLUDE 'Carray.f'

INTEGER DUN,K,J,IND,I
DOUBLE PRECISION LEV(NN),C(NNS,NN),TEMP

DUM=N-1
IND=SNUMB
DO 15 K=1,N-1

DO 25 J=N,K+I,-l
IF (C(INDJ).LT.C(IND,J-1)) THEN

TEMP=C(IND,J-1)
C(IND,J-1)=C(IND,J)

C(IND,J)=TEMP
END IF

25 CONTINUE
15 CONTINUE
DO 10 I=1,DUN

LEV(I)=(C(INDI+1)+C(IND,I))/2.ODO
10 CONTINUE

c write(*,*)
write(*,*) 'The Levels used are:
write(*,100) (Lev(i),i=1,dum)
100 format(4F16.6)
write(*,*)
RETURN
END

c This routine computes all the zeros of RpCY) at a given
c level lev(1).The zeros are stored in the matrix ZERO also the
c nearest value of Rp(Y) to the Left and to the right of t
c the zero is stored in the matrix TESTPT,finalLy the
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C nu~r of zeros are stored in NUMKOFZERO.
c To find the zeros the routine scans a list of data that
c contains values of Rp(Y)-tevCI) in search of a change of
c sign or a zero value.

SUBROUTINE LISTOFZERO (ZERO,NLMOFZERO,TESTPT,LEV)

INCLUDE 'define.f'

INTEGER I,J,K,MAXPT
INTEGER NUNOFZERO(ZN)
DOUBLE PRECISION TESTPTCZN,ZMAXINTER),LEV(NN),ZERO (ZN,ZMAX)
DOUBLE PRECISION ROOT,CHECK
DOUBLE PRECISION RofLLev
EXTERNAL LEVELS,ROOT
EXTERNAL. Roftlev

DO 10 I1=1N-1
K= 1
LEVEL=LEV( I)
DO 20 J=1,NUN4PT-1

CHECK=(RP(J)-LEV(I ))*(Rp(J+l)..LEV(I))
IF (CHECK.LT.O.0D0) THEN

ZERO(I ,K)=ROOT(Yp(J),Yp(j+1 ),RofLtev)
TESTPT(I ,K,1)=Rp(J)

K=K+1
ELSE IF (Rp(J).EQ.LEV(I)) THEN

IF (J.NE.1) THEN
GO To 20

ELSE
ZERO(I ,K)=Yp(1)
TESTPT( I,K, 1 WLEV( I)-Rp(J+l)
TESTPT(I,K,2)=Rp(j+l)
K=K+1

END IF
ELSE IF (Rp(J4.1).EQ.LEV(I)) THEN

ZER0(II,K)='p( 341)
TESTPT(I ,K,1)=Rp(J)
TESTPT( I,K,2)=Rp(J+2)

END IF =1

20 CONTINUE
NUJMOFZERO( I )K-1

10 CONTINUE
RETURN
END

c This routine will merge in order two lists of zeros and
c testpoints.The list of zeros obtained at the level LEVA is
c merged with the list of zeros obtained in LEVB in an increasing
c order,the new list of zeros is stored in the array MZERO.
c Similarly the testpoints obtained at the two different levels
c are stored in increasing order in MTESTPT.

SUBROUTINE MERGEANDSORT (LEVA,LEVB,ZERO,TESTPT,MZERO,MTESTPT,
* NU1MOFZERO)

INCLUDE 'define.f'

DOUBLE PRECISION ZE-RO(ZN,Z1MA),IESTP1(ZN,ZM4A)C,lNER)
DOUBLE PRECISION MZERO(MMA%),MTESTPT(NMAX,MINTER)
INTEGER NUNO0FZERO(ZN)



INTEGER LEVA,LEVB,ILA,ILB,IM,T

IhA=1
ILB=1
19=1

10 CONTINUE
IF (ILA.LE.NLUMOFZERO(LEVA)) THEN

IF (ILB.LE.NWIODFZERO(LEVB)) THEN
IF (ZERO(LEVA,ILA).LE.ZERO(LEVS,ILB)) THEN

NZERO( IN)=ZERO(LEVA,ILA)
NTESTPT(IN, 1 )TESTPT(LEVA, ILA, 1)
MTESTPT( IM,2)=TESTPT(LEVA, ILA,2)
ILA=ILA+l

ELSE

MZERO( IN)=ZEROCLEVB, ILS)
MTESTPT( IN,1 )=TESTPT(LEVB, ILB,l)
M4TESTPT(114,2)=TESTPT(LEVB, tLB,2)
ILB=ILB*1

END IF
IN= IN 1
GO TO 10

END IF
END IF
IF (ILA.GT.NUMOFZERO(LEVA)) THEN

DO 20 T=1ILB,NUN40F ZERO( LEVB)
NZERO( IM)=ZERO(LEVB,T)
MTESTPT(IM, 1)=TESTPTCLEVB,T, 1)
M4TESTPT( IM,2)=TESTPT(LEVB,T ,2)
IM=IN+1

20 CONTINUE
ELSE

DO 30 T=ILA,NUNO0FZERO(LEVA)
MZER0( IM)=ZERO(LEVA,T)
MTE~STPT(IKV)=TESTPT(LEYA,I .1)
MTESTPT(IN,2)=TESTPT(LEVA,T,2)
I M= IN.1

30 CONTINUE
END IF
RETURN
END

c This routine given a list of the zeros and its testpoints
c obtained at a given level gives the new partition stored in
c the matrix ARS.The testpoints will be used to take a "peak"
c at the left or right of a zero which will, enable us to
c determine if the range of r(y) in an interval formed by two
c consecutive zeros is above or below a certain Level
c or between two Levels.

SUBROUTINE NEWPART (ZERO,TESTPT, INOX,MNLPFZERO,ARS,LEV)

INCLUD~E 'define.f'

INTEGER INDX,NIM,L,LEYA,LEVB,I,J,K
DOUBLE PRECISION ZERO(ZN,ZN4AX),TESTPT(ZN,ZN4AX,INTER)
INTEGER NIMOFZERO( ZN)
DOUBLE PRECISION ARS(NNS,NN,NM4AX),LEV(NN)
DOUBLE PRECISION MZERO(MlAX),NTESTPT(NW4A,MITER)
EXTERNAL LEVELS,KERGEANDSORT
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DO 10 Im1,N
Kal

c We are searching for all the values of Y that belongs to
c t-B-A,B+A] such that RIMY is less than LEV(1).

IF (I.EQ.1) THEN
00 20 Jz1,NWGOFZERO(1)

IF (TESTPT(I,J,1).LT.LEV(1)) THEN
IF (J.EQ.1) THEN

ARS(L,I,K)= ZER0(lJ)+2
ARS(L. IKi+1)=ZER0(I ,J)
write(*,100) ars(1,i,k),ars(t,i,k+l),k
K=KC+2

ELSE
ARS(L, l,K)=ZERD(I ,J-1)
ARS(L,I,K+1)=ZERO(I,J)
write(*,100) ars(l~i,k),ars(L, i,k+l),k
K=K+2

END IF
END IF

20 CONTINUE
IF (TESTPT(I,NUMO0FZERO(l),2).LT.LEV(1)) THEN

ARS(L, I ,K)ZER0(I ,J)

write(*,100) ars(i, i,k),ars(L, i,k+l),k
K=K+2

END IF

c We are searching for all, the values of Y that belongs to
c (-S-A,B-A] such that RICY) is greater than LEV(N-1).

ELSE IF (I.EQ.N) THEN
00 30 J=1,NUI40FZERO(N-1)

IF (TESTPT(I-1,J,1).GT.LEV(N-1)) THEN
IF CJ.EQ.1) THEN

ARS(L,lI,K)=2ERO( -i, J)+2
ARS(L,I,K+1)= ZERO(I-1,J)
write(*,100) ars(t~i,k),ars(i,i,k.1),k
K=Ke2

ELSE
ARS(L, I,K)=ZERO(I-1,J-1)
ARS(L,I,K+1)=ZERO(I-1,J)
write(*,100) arsl, i,k),ars(L, i,k+1),k
K=K+2

END IF
END IF

30 CONTINUE
IF (TESTPT(I-I,NUMOFZERO(N-1),2).GT.LEV(N-1)) THEN

ARS(L I ,K)2ZERO(I -1 ,NUNO0FZERO(N-1))
ARS(L,I ,K+1)ZZERO(I-1,N MIIFZERO(N-1))-3
write(*,100) ars(I,i,k),ars(t,i,k.1),k
K-K,2

END IF

c we are searching for all the values of Y that belongs to
c [-B-AB-A3 such that Rl(Y) is between two given levels
c LEVA and LEV3. NERGESORT is cal led to obtain the new lists
c of zeros and testpoints.

ELSE
LEVA=I-1
LEVUSI



CALL NERGEANOSORT (LEVA,LEVB,ZERO,TESTPT,
M ZERO,MTESTPT ,NIlMOFZERO)
MW=zVUMOFZERO(I -1)eNUMOFZERO(I

DO 40 Jzl,NWl
IF (CNTESTPT(J,1).GT.LEV(I-1)).AND.

* (NTESTPT(J,1).LT.LEV(I))) THEM
IF (J.EQ.1) THEN

ARML I,0)-WER0(J)2
ARS(L.I ,K41)zZERO(J)
write(*,1OO) ars(Lti,k),ars(Lji,k+1),k

ELSE
ARS(L. I,K)=MZERO(J-1)
ARS(L, I,K+1)#IZERO(J)

END IF
END IF

40 CONTINUE
IF ((MTESTPT(NUN,2).GT.LEV(I-1)).AND.
* (NTESTPT(NLJN,2).LT.LEV(I))) THEN

ARS(L, I,K)=NZERO(NUN4)
ARS(L, I ,K+1 )=MZERO(NUN4)-3
write(*,100) ars(L, i,k),ars(l,i ,k+1),k
K=K+2

END IF
END IF

WRITE(*,*)
WRITE(*,*)
10 CONTINUE
100 FORKAT(2E15.5,14)
RETURN
END

c...................... copy ars into ar ...........................
c The new contents stored in ARS is Loaded into AR.
c If TEST=O then after each iteration the new partition
c is copied into the fiLe "start?"'.
c If TEST~I or 2 then after each iteration the new
c partition is copied into "starti" or "lstart?"l

SUBROUTINE UPDATE (ARS,AR)

INCLUDE 'define.f'

INTEGER DEL,I,J,K,REF
DOUBLE PRECISION ARS(NNS,NN,NMAX),AR(NNS,NN,NNAX)

IF (NS.LE.2) GO TO 10
WRITE(*,*) I ERROR NEED TO CHANGE "UPDATE" IN ROOTFB.F.1
10 CONTINUE
I =SNU14B

DO 20 J=1,N
DO 30 K1l,NAX

AR(I,J,K)zARSCI.JK)
30 CONTINEJ
20 CONTINUE
IF (COND.EQ.1) THEN

OPENCUNIT=12,FILEu'startl ',STATUSz'UNKNOWN')
REF-12
IF (LMAX) THEN
WRITE(*,*) 'THE NEW PARTITION IS LOADED INTO "startI"l.'
END IF

ELSE



OPENCUNITz99,FILEz'start2',STATUS='UNKNOhI'I)
RE pz99
WRITE(-,-) 'THE NEW PARTITION IS LOADED INTO "start2"e.'

END IF

DEL-1
DO 15 I=1,NS

DO 25 Jul,N
Do 35 KzI,NAX,2

IF (AR(I,J,K).NE.AR(I,J,K+1)) THEN

WRITE(REF,130) DEL,DEL
120 FORMAT(Fl5.9,3X,F15.9)
130 FORKAT(2I6)

END IF
110 FORMAT(F16.11)
35 CONTINUE
25 CONTINUE
15 CONTINUE
CLOSE (UNIT=REF)
RE TURN
END

c This routine wiitt. ctear the folLowing matrices:
c ZERO,TESTPT,MZERO,MTESTPT,NUNO0FZERO.

SUBROUTINE CLEAR (ZERO,TESTPT,MZERO,I4TESTPT,NUNO0FZERO)

INCLUDE 'define.ft

INTEGER I,J,K
DOUBLE PRECISION ZERO(ZN,ZMAX),TESTPT(ZN,ZNAX,INTER)
INTEGER NUMOFZERO(ZN)
DOUBLE PRECISION NZERO(PMNAX),MTESTPT(MM4AXMINTER)

DO 10 I=1,ZN
DO 20 J=1,ZMAX

ZERO( I.J )=. 000
20 COrNUME
10 CONTINUE

DO 100 I=1,ZN
Do 200 J=1,ZMAX

00 300 K=1,INTER
TESTPT(I ,J,K)=0.ODO

300 CONTINUE
200 CONTINUE
100 CONTINUE

DO 15 I=1,ZN
NL040FZERO( I )=0.000

15 CONTINUE

DO 11 I=1,NMAX
DO 21 J=1,MINTER

MTESTPTCI ,J)=O.ODO
21 CONTINUE
11 CONT INUE
DO 14 zi=,M4A

MZERO( I )=O.OO
14 CONTINUE
RETURN
END



c............ Ut (I N O , A R)............ .....
c Find new partition and store it in the matrix AR.

*c This routine mitt be called in the MAIN PROGRAM.

SUBROUTINE UI(INDXAR)

INCLUDE 'deflne.f'

INTEGER INOX
DOUSLE PRECISION AR(NNS,NN,NM4AX),ARS(NNS,NNNNAX)
DOUBLE PRECISION ZERO(ZNZNAX),TESTPT(ZN,ZMAX,INTER)
INTEGER NUMO0FZERO(ZN)
DOUBLE PRECISION MZERO(MMAX),MTESTPT(MMAX,NINTER)
EXTERNAL CtearARCLEARLISTOFZERQ.NEWPART,UPDATE

CALL CtearAR (ARS)
CALL CLEAR (ZERO,TESTPT,N4ZERO,MTESTPT,NUI40FZERO)
CALL LEVELS(LEV)
CALL LISTOFZERO (ZERO, NUMOFZERO, TESTPT, LEV)
CALL NEWPART (ZERO,TESTPT, INDX,NU4OFZERO,ARS,LEV)
CALL UPDATE (ARS,AR)
RETURN
END



c JOHN. F

c INITIALIZATION OF ARRAYS USING SUBROUTINE: INITDI
c
c * THIS ROUTINE IS CHANGED DEPENDING ON THE EXAMPLE CHOSEN *

C

integer dist
doubte precision a,b

c
c Initiatize commnon blocks for distributions.
C

inctude 'define.f'
C

c Read data from fiLe
C

open(unit=3,status~'otd',name'ldistr.dat')
do 10 dist =azero,ns

read (3,*) Winfo(dist,Lower), Winfo(dist,upper)
a~winfo(dist, Lower)
b=UWinfo(dist,upper)
Winfo(dist,meanl )=(b+a)I2.OdO
Winfo(dist,ms)=((b-a)**2)/12.OdO + Winfo(dist,meanl)**2

10 continue
ciose (unit=3)

C
c Print info, and comfpute heights for uniform distributions.
C

print *, 'UniderLying-distribution information:,
C
do 20 dist =azero,ns

Winf o( di stheight)
& = l.dO/(Winfo(dist,upper)-Winfo(dist,Lower))
IF (OIST.EQ.O) THEN

WRITE(*,11) Winfo(dist,Lower),
& Winfo(dist,upper), Winfo(dist,height)
11 FORMAT(' X( :',F8.5,',',F8.5,',',F8.5)
ELSE

WRITE(4',12) dist, Winfo(dist,lower),
& Winfo(dist,upper), Winfo(dist,height)

12 FORMAT('Z',I1, ' :',F8.5,', '.F8.5,', ',F8.5)
END IF

20 continue
C

c print *, 'Computed observation-distribution information:,
c
do 30 dist 1 l,ns

Yinfo(dist,lower) =Winfo(dist,lowier) + Winfo~azero, Lower)
Yinfo(dist,upper) = Winfo(dist,i.pper) + Winfo~azero,upper)

c print *, dist, ' ,Yinfo(dist,Lower), Yinfo(dist,I4pper)
30 continue

C

return
end

C

c CINTGD function
c
c This function returns the required integrand for computing
c
c prob( Y~sl in (al,blJ Y~s2 =yy )*f_(Y~s2)Cy)
c (set igtype-cncdrbm1)
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C

c E( X I Y-s2 = yy I * f_(Ys2)(yy) (set igtype=cndexp=2)
C

c density for Y_s2 (set igtype=convot=3)
C

double precision function cintgd(x)
include ,define.f'
double precision densty, IW, x, z, t, u

C

c Integrand for computing density of Y s2, which is the convolution
c of the density of X Wazero with the density of W-s2.
C

L = yy-x
z = densty(azero,x) * densty(s2,L)

c

goto ( 110, 120, 130 ), igtype
C

c Integrand for computing prob( Ysl in (al,bl] j Y-s2 = yy )
C

110 L = l-x
u = utl-x
z = z * PW(sl,t,u)
goto 130

C
c Integrand for computing E( X Y_s2 yy I
C

120 z=z x
C

130 cintgd z
C

return
end

c
c FUNCTION UINTGD, set up integrand for nonconditional "stuff".
C
c * THIS ROUTINE IS CHANGED DEPENDING ON THE EXAMPLE CHOSEN *
C

C

c This function returns the required integrand for computing
C

c EC X I_(LL1,uLl]IY_si) I (set igtype=corr=l)
C

c prob( Ysl in (LL1,u[l1 , Ys2 in (Lt2,uL2] ) (set igtype=jpr=2)
C

c prob( Ysl in (ttl,utl]) (set igtype=unipr=3)
C

double precision function uintgd(x)
include 'define.f'
double precision densty, PW, x, z,L,u, Lt,ut,a,b, zptus
logical novoid
external inters

c

c Integrand for computing prob( Ysl in (Ltl,ull]).
C

I = ttl-x
u = utl-x
z = densty(azero,x) * PW(sl,t,u)

goto ( 110, 120, 130 ), i~type
c

c Integrand for computing E[ X I_(tL1,ulI](Ysl) I
C

110 if (tmax) then

C)



azwinfo(sl,tower)
b-winfo(sl,upper)
call inters(a,b,t,u,IL ut,novoid)
if (novoid) then

zptus= winfo(sl,height)*.5*(ut**2-Lt**2)*densty(azero,x)
else

zptus=O.OdO
end if

else
zplus = O.OdO

end if
z = z * x + zplus

goto 130
c
c Integrand fcr computing prob( Ysl in (lL1,ull] , Y s2 in (0L2,u[2])
c

120 L = L12-x
u = ul2-x
L = z * PW(s2,tu)

130 uintgd = z
return
end

c
c * THIS ROUTINE IS CHANGED DEPENDING ON THE EXAMPLE CHOSEN *
c
C Compute densty(dist,x), where dist=O implies X
c and dist>=1 implies W dist
c

double precision function densty(distx)
double precision x
integer dist
include 'define.f'

c
densty = Winfo(dist,height)
return
end

c * THIS ROUTINE IS CHANGED DEPENDING ON THE EXAMPLE CHOSEN *
c
c Compute prob( W_dist (a,b])
c

double precision function PW(dist,aob)
double precision a, b, L, u, trim, uiim, z

integer dist
include 'define.f'

c
if ( b .it. a ) then

z=O

else
Ltim = Winfo(distlower)
uiim = Winfo(dist,upper)
if ( b Lt. tlim ) then

z=0
else if ( a .gt. utim ) then

z=O
else

if a a .At. ttim) then
t=trim

else
t=a

endif



if ( b .gt. ulim ) then
u = ulim

else
u b

endif
z x Winfo(dist,height)*(u - I)

endi f
endif
IW= z
return
end

c
c Determine the intersection of [a,b] and [c,d]. Set novoid = .true.
c if the intersection is nonempty. Set novoid = .false. otherwise.
c If novoid = .true. then (1,u] is the intersection of [a,b] and [c,d].
c
c

SUBROUTINE inters(a,b,c,d,L,u,novoid)

double precision a,b,c,d,t,u
logical novoid

C

if (b .lt. a) then
novoid= .false.

else if (d It. c) then
novoid= .false.

else if ( d At. a ) then
novoid = .false.

else if ( c .gt. b ) then
novoid = .false.

else
novoid = .true.
if ( d Lt. b ) then

u d
else

u b
endif
if ( c .gt. a ) then

l= c
else

l=a
endif

endif
return
end

c This routine decodes an interval
SUBROUTINE FIXUP (LLX,ULX,LL,ULMAXL,MAXU)

DOUBLE PRECISION CHECK
DOUBLE PRECISION LLX.ULXLL,ULMAXUNAXL

CHECK=ULX-LLX

c (a,+INF3 -.-- > IN,s-33 then check=-3.OdO NB: INF:MAXU
IF (CHECK.LT.-2.6OO) THEN

UL-NAXU
LL=LLX

c [-INF,b] ---- > [2+b,b] then check=-2.OdO NB: -iNF=MAXL
ELSE IF (CHECK.LT.-1.6DO) THEN



UL=U.LX
LL=NAXL

c C-INF,+INFJ -- > (0,11 then checks-1.OdO
ELSE IF (CHECK.LT.-.SOO) THEN

ULMKAXU
LLNAXL

c if check >0 then we have a finite intervaL.
ELSE

UL=ULX
LL=LLX

END IF
RETURN
END



c JONN2. F

c INITIALIZATION OF ARRAYS USING SUBROUTINE: INITO!
C

subroutine initdi
C

integer dist
double precision a,bFirst-Noei~t,Sec Moment, Inse,alpha
externalI F irst-Mmn,SecN Moet

c initialize coummon blocks for distributions.

include 'define.f'
C

c Read data f rom f ile
C

open(unit=3,status'lold',name'ldistr.dat')
do 10 dist = azero,ns

read (3,*) Winfo(dist, Lower), Winfo(dist,upper)
a'=Winfo(dist, lower)
b=-Winfo(dist,upper)

Winfo(dist,ms)=Sec-Moment(b~dist)-Sec-Moment(a,dist)-Uinfo(dist,meanl )**2
10 continue

close (unit=3)

a=Winfo(azero,ms)
b=-Winfo(1 ,ms)
write(*,*) a,' and ',b,' are a and b'
alpha~a/(a+b)
Lmse~a*(1.OdO-alpha)
write(*,*)
write(*,*) 'LMSE is equal: ',lmse
write(*,*)

c
c Print info, and compute heights for uniform distributions.
c
print *, 'Undertying-distribuitiorn information:,

c
do 20 dist =azero,ns

WRITE(*,11) dist, Winfo(dist,lower),
& Winfo(dist,upper)

11 FORKAT(14,' :',F8.5, ', ,F8.5)
20 continue

c
c print *, 'Comrputed observation-distribution information:'
c
do 30 dist =1,ns

Yinfo(dist,lower) = winfo(dist,lower) + Winfo(azero, lower)
Yinfo(dist,upper) = Winfo(dist,upper) + Winfo(azero,upper)
WRITE(*,12) dist, Yinfo(dist,lower),
& Yinfo(dist~upper)

12 FORMAT('Y',14,':',FS.5,',',F8.5)
30 continue

c
return
end

c
c CINTGO function
c
c This function returns the required integrand for comrputing



c&

c prob( Yal i (al,bl] Y-s2 -yy ) f-(Ys2)Cy)
c (set igtypeacndprb=l)
C
c EE X IY~s2 z yy I * f_(Y~s2)(yy) (set igtypezcnidexp=2)
C
c density for Ys*2 (set igtype~convot=3)
C
double precision function cintgd(x)
include 'define.f'
double precision densty, PW, X, z, I., u

C
c Integrand for computing density of Y~s2; which is the convolution
c of the density of X W-azero with the density of W-s2.
C

zz densty(azero,x) *densty(s2,L)

goto ( 110, 120, 130 ), igtype
C
c Integrand for computing prob( Y~s1 in (al,bl] Y-s2 =yy

C

110 L = 111-x
u = u11-x
z = z * PW(sl,t,u)
goto 130

C
c Integrand for computing EE X Y-s2 =yy I
C

120 z =z x
C

130 cintgd =z
C

return
end

C

c FUNCTION UINTGD, set uip integrand for nonconditional, "stuff".
C
c This function returns the required integrand for computing
C

C EE X I_(ll1,u(ll(Y s1) I (set igtype=corr=l)
C
c prob( Y~sl in (LL1,ullJ Y~s2 in C112,uL2] ) (set igtype=jpr=2)
C
c prob( Y~s1 in Otl,ulil (set igtype=unipr=3)
C

double precision funiction uintgd(x)
include 'define.f'
doubLe precision densty, PW, X, z,L,u,LL,ut,a,b,zpLus,First Moment
Logical novoid
external inters, First-Momet

C
c Integrand for computing prob( Y~s1 in (ILI,u~ll])
c

L= IL1lx
u =ukl-x
z = densty(azero,x) * PWi(sl,t,u)

c
goto ( 110, 120, 130 ), igtype

c Integrand for computing Et X 1_I ll,uLl](Y si)I
C



110 if (Linux) then
azwinfo(s1 * owier)
bawinfo(s1 ,i.per)
call inters~a,bL,u,LL,u(,novoid)
if (novoid) then

eleZptusz(First-Noinnt(b,sl)-First,.Noment(a~sl ))*densty(azero,x)

!PLUSMO.OdO
end if

else
zplus z 0.OdO

end if
z = z * x + zplus

goto 130
c
c Integrand for computing prob( Y..s1 in (ttl,ullJ Y~s2 in (L12,uI1J)
C

120 L. z tt2-x
u =ut2-x
z = z * PW(s2,L,u)

C

130 uintgd = z
C

return
end

C

c Compute densty(dist,x), where dist0O implies X
c and dist>=1 implties WUdist
C

double precision function densty(dist,x)

include 'define.f'
double precision x,X0laaf,Pigatpha,b,v,heights
integer dist
external x~laaf

c
PI=XOlaaf(x)
a=Winfo(dist, tower)
b=-Winfo(dist,upper)
v=(3.OdO*PI )/(2.OdO*b)
alplha=(6.0d0*PI )/((15.0d0*PI+8.OdO)*b)

heights= l.dO/(b-a)

If (dist.eq.1) then
densty- alpha*(5.OdO/4.OdO - cos(v~x))

c densty =heights
else if (dist.eq.azero) then

c densty a heights
densty- alpIha*(5.0d014.OdO - cos(v*x))

else
c densty = heights

densty- aLph~a*(5.0d0/4.0d0 - cos(v~x))
end if

return
end

C

c Compute prob( II~dist in (a,bl
c
double precision function PW~dist,a,b)

double precision a, b, I, u, tii, uliin, z,DistrFunc
integer dist

include 'define.f'



external DistrFunc

if ( b .lt. a ) then
z aO

else
Ilim = Winfo(dist,louer)
ulim z Winfo(dist,upper)
if ( b .Lt. ttim ) then

z=O
else if ( a .St. utim ) then

z=0
else

if C a .lt. ttim ) then
= Ilim

else
l=a

endif
if ( b .gt. ulim ) then

u = ulim
else

u b
endi f

z= DistrFunc(u,dist)-DistrFunc(l,dist)

endi f
endi f
PW = z
return
end

c
c Determine the intersection of [a,b] and [c,d]. Set novoid = .true.
c if the intersection is nonempty. Set novoid = .false. otherwise.
c if novoid = .true. then [I,u] is the intersection of [a,b] and [c,d].
C
C

SUBROUTINE inters(a,b,c,d,,t,u,novoid)

double precision a,b,c,d,L,u
Logical novoid

c
if (b .At. a) then

novoid= .false.
else if (d At. c) then

novoid= .false.
else if ( d .Lt. a ) then

novoid = .false.
else if ( c .gt. b ) then

novoid = .false.
else

novoid = .true.
if ( d .lt. b ) then

u=d
else

u= b
endif
if ( c .gt. a ) then

tsc
else

I =a

endi f
endif

;V9



return
end

SUBROUTINE FIXUP (LLX,ULXLL,UL,M4AXL,NAXU)

DOUBLE PRECISION CHECK
DOUBLE PRECISION LLXULX,LL,UL,MAXU,MAXL

CHECK=ULX-LLX

c Ea,+IKF1 ---- ' Ca,a-33 then check=-3.OdO mB: +iNf~miJu
IF (CHECK.LT.-2.600) THEN

UL4t4AXU
LL=LLX

c C-INF,b] ---- ~ > 2+b,b] then check=-2.OdO NB: -INFNKAXL
ELSE IF (CHECK.LT.-1.600) THEN

UL=ULX
LL=MAXL

c (-INF,+INF] ---- > (O,-1J then check=-1.OdO
ELSE IF (CHECK.LT.- .5D0) THEN

UL=1AXU
LL=NAXL

c If check )O then we have a finite interval.
ELSE

UL=ULX
LL=LLX

END IF
RETURN
END

double precision function Sec Moment (X,point)

include 'define.f'
integer point
double precision x,alpha,v,b,Pi~xOlaaf~a,heights
external xOlaaf

pi=XOlaaf(x)
a=Winfo(point. lower)
b=Winf o(point, upper)
v=(3*PI )/(2*b)
atpha=(6.OdO*PI ),((15.OdO*PI+8.OdO)*b)

heights= l.dO/(b-a)

If (point.eq.azero) then
c SecMoenent=((X**3)*heights)/3.OdO

Sec moment:((5.OdO/12.OdO)*X**3-C1/v)**3*(v*x*cos(v~x)-2.OdO~sin(v~x)
& +v*2*x**Z.OdO*sin~v*x) ))*Aipha

else if (point.eq.1) then
c Sec -Moment=((X**3)*heights)/3.OdO

Sec -Mom t=((5.OdO/12.OdO)*X*3-(l/v)**3*(v~xcos(v~x)-Z.OdO'sin(v~x)
& +v**2*x**2. OdK)s in~v*x)) )*A Ipha

else
c Sec Mcjmenta((X**3)*heights)/3.OdO

Sec -4mentu(C5.DdD/12.OdD)*X**3-(I/v)**3*(v~x*cos(v*x)-2.OdD~sin~v~x)
& +v**2*x**2.OdO*sin(v*x)))*Atpha

end if

return
end



double precision function First-Moment CX,point)

include 'defined'l
integer point
double precision x,alphium,v,b,PI,xOlaaf,a,heights
external x~laaf

pizxolaaf(x)
a=winfo(point, Lower)
b=-Winfo(point,upper)
Yv-(3.OdO*PI )/C2.OdO*b)
atpliaz(6.OdO*PI)/((15.OdO*PI+8.OdO)*b)

heights= l.dO/(b-a)

If (point.eq.azero) then
c First Moaient=(X*2)*.5OdO'heights

First Mcxment=((5.OdO/S.OdO)*x**2 .(1/v)**2*(cos(v~x)+v~x*sin(v*x)))
& *Alph~a

else if (point.eq.1) then
c First Moment=(X**2)*.5OdO~heights

First Moenentz((5.OdO/S.OdO)*x**2 -(l/v)**2*(cos(v~x)+v~x*sin(v*x)))
& *ALph.a

else
c First Moment=(X**2)*.5OdO~heights

FirstMoment=((5.OdO/8.OdO)*x**2 -(l/v)**2*(cos(v*x)+v*x*sin(v*x)))
& *Alpha

end if

return
end

double precision function Distr Fiznc (X~point)

include 'define.f'
integer point
double precision x,alpha,v,b,Pi~xOlaaf,a,he'ghts
externak x~laaf

pi=XOlaaf(x)
a=Winfo(point, tower)
b=-winfo(point~upper)
v=(3.OdO*PI )/(2.OdO*b)
atpha=(6.OdO*PI)/((15.OdO*PI+8.OdO)*b)

heights= l.dO/(b-a)

if (point.eq.azero) then
C Distr -Func=(X)heights

Distr -Funcz((5.OdO/4.OdO)*x -(l/v)*sin(v~x))*Aipha
else if (point.eq.1) then

Distr Func=((5.OdO/4.OdO)*x -(1/v)'sin(v~x))*Atpha
c Oistr Func=(X)*heights
else

c Distr FuncxCX)*heights
Distr Funcz((5.OdOI4.OdO)'x -(¶/v)*hin(v~x))*Aipha

end if

return
end



c COND. F

DOUBLE PRECISION FUNCTION CONY (IND,Y)

INCLUDE 'defirn..f'
INCLUDE Inmg.f'
INTEGER IND
DOUBLE PRECISION Y,LU,AB*C,D,RES,CINTGD
LOGICAL NOVOID
EXTERNAL CINTG, INTERS

A--WINFO(AZERO, LOWER)
8=-WINFO(AZERO,UPPER)
S2=IND
yy=y

IF (YY.GT.YINFO(S2,LOWER) .AND. YY.LT.YINFO(S2,UPPER)) THEN
C=YY-WINFOCS2,UPPER)
D=YY-WINFO(S2, LOWER)
CALL INTERS(A,B,C,D,L,U,NOVOID)
IF (NOVOID) THEN

I GTYPE=CON VOL

EPSABS= id-10
EPSREL=ld-B
I FA IL- 1
CALL DO1AJF(CINTGD,L,U,EPSABS.EPSREL,RES

* ,~ABSERR,W,LW, IW,LIW, IFAIL)
IF (IFAIL.NE.O) THEN

WRITE(*,*) 'IN CONV'
WRITE(*,*) 'LOWER LIMIT: 1,L
WRITE(*,*) 'UPPER LIMIT: ',U

END IF
ELSE

RES=O.ODO
END IF

ELSE
RES=O.ODO

END IF
CON V=ES
RETURN
END

DOUBLE PRECISION FUNCTION EC(CONDI,Y)

INCLUDE 'define.f'
INCLUDE 'nag.f'
INTEGER CONDI
DOUBLE PRECISION Y.L,U,A,B,C,D,RES.CONV,CINTGD
LOGICAL NOVOID
EXTERNAL CINTGD,CONV, INTERS

A=WINFO(AZERO, LOWER)
8=-WI NFO(AZERO. UPPER)
S2=CONDI
yYyx

IF (YY.GT.YINFOCUZ,LOWER) .AND. YY.LT.YINFO(S2,UPPER)) THEN
If ULMAX) THEN

RES&!
ELSE

CaYT-WINFOCS2,UPPER)
D=YY.WINFO(S2, LOWER)
CALL INTERS(A,S,C,D,L,U,NOVOID)
IF (NOVOID) THEN



IGTYPE2CNDEXP

EPSA3Sx id-1O
EPSAEL21 d-B
IFAILs-1
CALL DOIAJF(CINTGD,L,U,EPSABS,EPSREL,RES

*ABSERR,W,LW, IW,LIW, IFAIL)
IF (IFAIL.NE.0) THEN

WRITE(*,*) 'IN EC.'
WRITE(*,*) 'LOWER LIMIT: ',L
WRITE(*,*) 'UPPER LIMIT: ',U

END IF
RES=RES/CONdV(S2,YY)

ELSE
RES=O.ODO

END IF
END IF

ELSE
RES=O.ODO

END IF
EC=RES
RETURN
END

DOUBLE PRECISION FUNCTION FUN4 (LLX,ULX,Y,IND,CONDI)

INCLUDE 'define.f'
INCLUDE Inag.f'
INTEGER IND,CONDI
DOUBLE PRECISION Y,L,UA,B,C,D,RES,CONV,CINTGD
DOUBLE PRECISION LLX,ULX,MAXL,MAXU
LOGICAL NOVOID
EXTERNAL CINTGD,CONV, INTERS,FIXUP

A=WINFO(AZERO, LOWER)
B=WINFO(AZERO,UPPER)
Si =I ND
S2=COND I
Yy=y
MAXU=YINFO(S2,UPPER)
MAXL=YINFO(S2, LOWER)
CALL FIXUP (LLX,ULX,LL1,UL1,MAXL,MAXU)

IF (YY.GT.YINFO(S2,LOWER) .AND. YY.LT.YINFO(S2,UPPER)) THEN
C=YY- WIN FO( S2, UPPER )
D=YY- WIN FO( S , LOWER)
CALL INTERS (A,B,CD,L,U.NOVOID)
IF (NOVOID) THEN

I GTYPE=CNDPRB

EPSABS= id-iD
EPSREL=id-8

c EPSREL=ld-6
IFAIL=-l
CALL D01AJF(CINTGD,L,U,EPSABS,EPSREL,RES

* ,~ABSERR,W,LW, IW,LIW, IFAIL)
IF (IFAIL.NE.O) THEN

WRITE(-,-) 'IN FUN4.'
WRITE(-,*) 'LOWER LIMIT: ',L
WRITE(-,-) 'UIPPER LIMIT: 1,U
WRITE(*,*) 'THE IND and CONO ARE: ',IND,COSIO

END IF
RES=RES/CONV(S2, YY)

ELSE



RES=O.OO
END IF

ELSE
RESzO.(00

END IF
FUN4=RES
RETURN
END



c UNCOND.F

DOUBLE PRECISION FUNCTION PG (LLX,ULX, INDEX)

INCLUDE 'nag.f'
INCLUDE 'define.f'
INTEGER INDEX
DOUBLE PRECISION LLX,ULX,L,U,RES.MAXL,MAXU
DOUBLE PRECISION UINTW,A,B,CD
EXTERNAL UINTW,FIXIP, INTERS
LOGICAL NOVOID

IF (IMAX) THEN
Sl=COND

ELSE
Sl=INDEX

END IF
14AXU=YINFO(S1 ,UPPER)
MAXL=YINFO(S1 ,LOWER)
CALL FIXUP (LLX,ULX,LL1,UL1,NAXL,KAXU)
A=WINFO(AZERO, LOWER)
B=WI NFO(AZERO,UPPER)
C=LL1 -WINFO(Sl,UPPER)

D=UL1 WINFO(Sl,LOWER)
CALL INTERS(A,B,C,D,L,U,NOVOID)
IGTYPE=UNIPR
IFAIL%-l
EPSABS=1D-1O
EPSREL=1 .00-08

IF (NOVOID) THEN
CALL DO1AJF(UINTGD,L,U,EPSABS, EPSREL,RES,A~sERR,

* W,LW,IWLIW,IFAIL)
IF (IFAIL.NE.O) THEN

WRITE(*,*) 'IN PG'
WRITE(*,*) 'LOWER LIMIT: ',L
WRITE(*,*) 'UPPER LIMIT: ',U

END IF
ELSE

RES=0.ODO
END IF
PG=RES
RETURN
END

DOUBLE PRECISION FUNCTION JPGCLLX1,ULXI,LLX2,ULX2,IND1,1ND2)

INCLUDE 'nag.f'
INCLUDE 'define.f'
INTEGER IND1,IND2
DOUBLE PRECISION LLX2,ULX2,LLXI,ULXI
DOUBLE PRECISION UINTGD,L,U.RES,NAXL,MAkXU
DOUBLE PRECISION A,B,C,D,TEMPt,TEM4PH
EXTERNAL UINTGD,FIXUP, INTERS
LOGICAL NOVOID

S = I ND 1
S2=IND2
A=WI NFO(AZERO, LOWER)
B=WI NFO(AZERO,UPPIR)
MAXL=YINFO(SI ,LW.R)
MAXU=YINFO(Sl ,UPPER)
CALL FIXUP (LLXI,ULX1,LL1,UL1,MAXL,KAXU)
C= LLO WINFOCS1,UPPER)



0u ULI - WINFOCS1,LOWER)
CALL INTERS(A,3,C,0,TEMPLTEMPH,IMovoIo)
IF (NOVOID) THEN
MAXL=YINFO(S2,LOWR)
MAXUsYINFO(S2,UPPER)
CALL FIXUP (LLX2,ULX2.LL2,UL2,KAXL,M4AXU)
C= LLZ - WINFO(SZ,UPPER)
Da UL2 - WINFO(32,LOWER)
CALL INTERS(TEWL,TEN4PH,C,D,L,UNOVOID)

c write(*,*) L,U
IF (NOVOID) THEN
IGTYPE=JPR
IFAIL=-l
EPSABS=lD- 10
EPSREL=1 .00-06

c EPSREL=1.OD-O8

CALL DO1AJF(UINTGD,L,U,EPSABS,EPSREL,RESABSERR,
W, LW, 1W, LIW, [FAIL)

IF (IFAIL.NE.O) THEN
WRITE(-,*) 'IN JPG'
WRITE(*,*) 'LOWER LIMIT: ',L
WRITE(*,*) 'UPPER LIMIT: ',U

END IF
JPG=RES

ELSE
JPG=0. 000
GOTO 10

END IF
ELSE

JPG=0.ODO
END IF
10 CONTINUE
RETURN
END

DOUBLE PRECISION FUNCTION MEANX (LLX,ULX, INDEX)

INCLUDE 'nag.f'
INCLUDE 'define.f'
INTEGER INDEX
DOUBLE PRECISICN LLX,ULX,L,UMAXL,MAXU,RES
DOUBLE PRECISION UINTGO,A,B,C,D
LOGICAL NOVOID
EXTERNAL UINTGD,FIXUP, INTERS

IF (LMAX) THEN
S1=CONdD

ELSE
S1=INDEX

END IF
MAXU=YINFO(SI ,UPPER)
MAXL=YINFO(S1 ,LOWER)
CALL FIXUP (LLX,ULX,LL1,UL1,N4AXL,PMA)
A=WI NFO(AZERO, LOWER)
B=IdI FO(AZERO,UPPER)
C=LLI WINFO(Sl,UPPER)
D=UL1 WINFO(St,LOWER)

c write(*,*) C,d I Is c and dl
CALL INTERS(A,B,C,D,L,U.NOVOID)

c write(*,*) L,U
I GTYPE=CORR
I FA IL=- 1



EPSABS=1D- 10
EPSREL=1.00-06

IF (NOVOID) THEN
CALL D01AJF(UINTQD,L.U,EPSA5S,EPSREL,..ES,ABSERR,

* W,LW,IW,LIW,IFAIL)
IF (IFAIL.ME.0) THEM

WRITE(',-) #IN MEA11V
WRITE(*,') 'LOWER LIMIT: 1,L
WRITE(*,*) 'UPPER LIMIT: ',U

END IF
ELSE

RES=0.000
END IF
MEANX=RES
RETURN
END
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On the Computation of Shot-Noise Probability Distributions

John A. Gubner, Member, IEEE

Abstract - A general method that does not use numerical analyze shot-noise characteristic functions and moment-

integration is presented for approximating a continuous cumu- generating functions. In Section V we modify the method
lative distribution function (cdf) from its characteristic func- of Section II to handle shot-noise random variables. Sev-
tion. If the cdf has a density that is piecewise smooth except eral examples are considered and density plots are pre-
for jump discontinuities, and if the discontinuity locations can sented. Since shot-noise characteristic functions them-
be identified, then excellent density approximation can be ob- selves can also be difficult to compute, we consider an ap-
tained by fitting a cubic spline to the cdf approximation and
then differentiating the spline. Since shot-noise densities typ- proximation scheme in Section VI.

ically contain essential discontinuities as well as impulses, the
method is adapted to handle these complications. II. THE GENERAL METHOD

Index Terms - Filtered point process, Poisson process,

Fourier transform, Fourier series, fast Fourier transform, Gibbs We propose the following general approach for recover-

phenomenon, sampling theorem, spline. ing a continuous cdf from its characteristic function. The
approach is based on the following lemma, which is proved
in the Appendix. We then discuss a method for recovering

I. INTRODUCTION the corresponding density, assuming that it is piecewise
smooth.

Shot-noise processes, also known as filtered point pro-

cesses, constitute an important class of mathematical mod- Lemma 1: Let p be a finite nonatomic measure on IR

els used to understand physical phenomena ranging from with characteristic function
the measurement of nerve impulses in the brain, to the
formation of images on film exposed under low-level illu- oe
mination, to the electric current generated by photodiodes 0(w) : e0 dp(z).
used in optical communication systems. Hence, it is un-

fortunate that in most cases, shot-noise densities must be Then

obtained by numerical contour integration of their charac- P(O, ) = limb(
teristic functions or other sophisticated techniques. L-- ,(

We first present a general method for recovering a con-
tinuous cumulative distribution function (cdf) from its where

characteristic function without numerical integration. If 1/n2r, n = odd, (2)
the cdf has a density f(y) that is piecewise smooth except 0, n = (20
for jump discontinuities, and if the discontinuity locations 0n = even € 0.

can he identified, we can easily recover the density as well Furthermore, for 0 < L < 00, the error,

by fitting a cubic spline to the cdf approximation and then

d(ifferentiating the spline. Unfortunately, shot-noise densi- bt (nir/L) - p(0, cc),
ties typically not only have an impulse at the origin but Z
also satisfy limy-o+ f(y) = oc. We must therefore study n=-oo

the characteristic function more carefully and modify the is upper bounded by /p(-oo, -L] and lower bounded by

initial method to account for these complications. -u(L,,-).

The paper is organized as follows. In Section II we

summarize the general method for the case of a piecewise- If we now fix any y E IR and consider the measure

smooth density with jump discontinuities. In Section III py(C) = p(C + y), it is an easy corollary that
we introduce our shot-noise model and summarize prior

work on recovering shot-noise densities. In Section IV we 0)= ljiymLP(,0)=Llm F b,,4t( n~r/ L)e-•'/ , (3)

Part of this research has been submitted to the 1993 IEEE In-
ternational Symposium on Information Theory. San Antonio, TX, with the corresponding upper and lower error bounds being
January 17-22, 1993. This work was supported in part by the Air /i(--,3 -L + y] and -p(L + y, oc). If we restrict attention
Force Office of Scientific Research under Grants AFOSR-90-0181 to y in a subinterval [Li, L 2 1 C (-L, L), then

and F49620-92-J-O.30)5.
The author is with the Department of Electrical and Computer

Engineering. Cniversity of Wisconsin, Madison, WI 53706. p(-,c, -L + y] < p(-oo, -L + L2], (4)



and Theorem (Bzrkhoff and de Boor (2]): Let F be a func-
- M(L + y,cc) _> -p(L f- LI, x). (5) tion that is four times continuously differentiable on an

interval [a, b]. If F, is a sequence of interpolating cubic
Note that if p (-o, 0) = 0, then the upper bound is zero , splines satisfying the additional constraints F'(a) = F'(a)
and ilf,(0. cc) = 0, then the lower bound is zero. To obtain and F,,(b) = F'(b), then Fm, F', F,. and F,"' converge
more easily computable error bounds, we assume that uniformly to F, F', F". and F", respectively, assuming

that as m - oc, (i) the number of knots of Fm tends to
M(s) e"= e" dp(x) < Dc, for all s E IR. infinity, (ii) the maximum knot spacing tends to zero. and

(iii) the ratios of the knot spacings of F, are bounded.

Then for y E [L,. L.] and s >0, we have If the measure M has a piecewise-smooth density. we ap-
(L + !S c)K (L + proximate it by differentiating (the negative of) the cubic

spline approximation of F~c between the knots. To ob-
~ e-.+l*+£'(s) tain a good approximation, it is necessary to place triple

< knots at the density jump points, double knots at corners.
and single knots at corners in the derivative of the density.

where I+(r) sup,> 0 [sx - K(s)] and K(s) = In A1(s). This will become clearer in the examples.
Similarly.

Erample 1: Let M be the probability measure whose den-
;i(-x, -L + y] < it(-Dc, --L + L 2] sity f(y) is one-half the sum of the uniform density on

< C-I_€-L+L1) (6) [-.5.5] and the standard normal density. The correspond-
ing characteristic function is

where l_(r) sup,>O[-sx - K(-s)]. It is well known
from the theory of large deviations that 1±(x) is convex, 1 [sin(,/2) + /2
continuous, and nonnegative. Furthermore, the suprema 2[ w/2
are achieved for some s > 0 [5, pp. 7-9].

Since 4(D,,) decays like 1/w, and since b,, decays like 1/n.
Remark: Since 4) is the characteristic function of P, we see that for fixed L, the series in (7) converges uniformly

equation (3) can be regarded as a sampling theorem for to a continuous function as N - cc, and thus the finite
the approximately bandlimited signal I(f). (f) were truly series will not exhibit Gibbs phenomenon. Of course, if we
bandlinited to (LI, L] i.e.' if p Li] = p( L2 - X:) = 0. were to differentiate (7), the new series coefficients would
then (3) would hold exactly for finite L > L2 - L1 , and decay like 1/n, and Gibbs phenomenon would appear. We
2,r/(L.-Ll) would be the Nyquist sampling period. When now take L = 6, Ll = 0, and L2 = 3. For the error bounds,
(P Is riot truly bandlimited. taking L < cc will introduce it suffices to consider (6) since the density is symmetric.
aliasing, the effect of which can be bounded as discussed Now,
a b o ve .

1 [ / - /

To use the formula in (3). set M(s) = 2 se "

.N It is easily verified numerically that the maximum value
F" N (y) = b,(P(nr/L)e-inyI/L" (7) of -s(-3) - In M(-s) is greater than 5.17 and occurs at

-s 3. The bound is then e-' 17 < .006. We next took
N = 256 and obtained 66 samples of FEN in the range

Now let c(• 0 and c. = bl,(nr/L) for n • 0. Observe (0, 3.02]. We first used 30 uniformly spaced knots in the
that c_,, is the complex conjugate of cn and that cN = 0 proper subinterval [.0001,3] to generate a cubic spline ap-
for .V' even. We can therefore write, for even N, proximation of F•.., using the NAG library subroutines

E02BAF and E02BCF. In Fig. 1 both f(y) and minus

.vy) = b4)•(O) + 2 Re YZ cne-�'v/L" the derivative of the spline are plotted. The oscillationsF'0 =at 1/2 are not due to the Gibbs phenomenon associated
with Fourier series. Rather, they are due to the fact that

If wo let y = k Ay. where Ay = 2L/N, then the sampies a cubic spline with distinct knots is twice continuously dif-
F[ .(k Ay) for k = 0 ...... V - 1 can be computed with an ferentiable, while limN-,,. Fj.N(y) is not even continuous
.%-point fast Fourier transform (FFT). We then propose at y = 1/2. Based on Fig. 1, we fitted a new spline with
to fit a cubic spline [3] to the samples of F ..v(k Ay) that only 8 knots, including a triple knot at 1/2 to handle the
lie in the range [L, 1.L2]. This approximation is motivated discontinuity in the density. The knot sequence was .0001,
bv the following result. .5, .5, .5, 1, 1.5, 2, 3. The resulting approximation to f(y)

Go



is shown if Fig. 2. It is interesting to compare Fig. 2 with 2. Image Detection
the straightforward FFT-approximation obtained from Consider x-ray images on film with point spread function

fy =p(w)e-lwy dw h(t,ir), t, r E 1R . Photons striking the film cause "smears"
2(Y) - instead of well-defined points. The response of the film at

1 N-i a point t E IR2 due to a photon arriving at a point T, is

"2r f Z o(n A w)e-'"Aw Ah(t. T,). This gives rise to the model
n=- (N-1)

by taking A,, = fr/L and y = kAy, where Ay =Zt = Z Avh(t,T,),

(2i/N)/Aw= 2L/N. With these substitutions,

N-1 u-k• which is a special case of (9) in which the Gaussian noise
f(k Ay) ( -. ; '(0) + 2 Re dne-24 Tn) (8) is absent.

n=O

where d, = 0 and d, = ;(nir/L). Using L = 6 and N = B Summary of Prior Work
256, we obtained the graph shown in Fig. 3, which clearly
shows the Gibbs phenomenon associated with the Fourier The most basic shot-noise statistics, namely the mean
series of a function with a jump discontinuity, and variance, were reported by Campbell in 1909 [6, 7].

Shot noise was also investigated by Schottky in his 1918

Ill. SHOT-NoISE MODELS paper on spontaneous current fluctuations in electric con-
ductors [21]. In 1944-45, Rice [19] gave an extensive anal-

Consider the real-valued process {Zt} given by ysis of shot noise when the underlying Poisson process has
Zt = A,,h(t, T) + Vt, (9) a constant intensity. In particular, he showed that as the

intensity tends to infinity, the probability distribution of
V the shot noise tends to a normal distribution. In 1971 Pa-

where the {T,,} are points of a Poisson process with non- poulis [18], considering underlying Poisson processes with
negative intensity A(.), {A,}) is an independent, identically time-varying intensity, gave numerical bounds on the dif-
distributed, nonnegative "gain" sequence, and {(t} is a ference between the true shot-noise distribution and the
zero-mean Gaussian process. We assume {.4,}, {TI1, and Gaussian approximation. The first nonasymptotic results
It} are mutually statistically independent. The deter- concerning the cumulative distribution of shot noise ap-

ministic function h is the system impulse response, or point peared in the 1960 paper by Gilbert and Pollak [101. For
spread function, depending on the application. an underlying Poisson process with constant intensity, they

derived an integral equation satisfied by the shot-noise dis-
A. Applications of the Model tribution. They were able to solve this integral equation

The model described by (9) is quite general. If trepre- for some special cases of the shot-noise impulse response.
sents time. {Z, } can be used as a model of the photoelectric Progress on the numerical computation of the density ofcurrent generated in the receiver of an optical communica- shot noise was reported by Richter and Smits [20] in 1974.tion system. If n represents two-dimensional spaal l posi- Their approach was to approximate the characteristic func-tion. then {Zt} can be used as a model of image formation tion by piecewise polynomial segments, which could then
ton then Ibe inverse Fourier transformed in closed form. In 1975 Fos-

chini et al. [9] gave a detailed analysis of the detection of a
shot-noise signal in the presence of additive white Gaussian
noise. They employed several approximations in order to

In optical communication systems, Zt models the elec- obtain manageable expressions for the likelihood function,
tric current delivered by an amplifier whose input signal is from which they could gain insight into the general struc-
the output of an avalanche photodiode. In this situation ture of the optimum detector. The 1976 paper of Mazo
the {T,} denote the times at which arriving photons are and Salz [16] analyzed the performance of integrate-and-
detected in the receiver, the {fA,} are the avalanche gains, dump filters. They also obtained exact formulas for the
h is the impulse response of the amplifier, and {(V} mod- probability distribution of the {A,} in physical avalanche
els thermal noise in the amplifier. The intensity A(-) of the diodes. Further work on computing the density of shot
Poisson point process is determined by the brightness of noise appeared in the 1978 paper by Yue et al. [23]. Their
the light falling on the photodiode. approach was to approximate the tails of shot-noise densi-

For high light levels, Zt is approximately normal (even ties by a weighted sum of normal densities. In 1984 Morris
if no Gaussian noise is added) [18, 19]. For low light levels, [17] considered an imaging model in which the photon lo-
the Gaussian approximation would not be so accurate. cations {T,} were observed and passed through a linear
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filter matched to the underlying Poisson-process intensity As suggested by the dr in (10), we are implicitly as-
A(.). He then studied hypothesis testing based on the re- suming that the underlying Poisson process lives on some
suiting shot-noise random variable. In 1988 Kadota [141 finite-dimensional euclidean space. For temporal Poisson
reported approximately optimum detection of determinis- processes, the integral in (10) is over IR = (-cno,xoc). For
tic signals in Gaussian and compound Poisson noise. His two-dimensional spatial Poisson processes, we have a dou-
model included a noise process that consisted of samples ble integral over the euclidean plane JR2 . In any case, using
of a Gaussian process where the sample times were Pois- Fubini's Theorem, we can rewrite (10) as
son distributed. In 1990. Lowen and Teich [15] considered
shot-noise processes with a power-law impulse response to V,(w) = E[A(-r)[ej9tT)A_ - 1] dr (I
obtain 1/f noise. They assumed that the underlying Pois- V
son process had a constant intensity, and they showed that assuming that
such shot-noise distributions need not converge to a normal
law as the intensity increases. In 1991 Hero [13] approxi- [f])A1
mated the likelihood ratio for observing a shot-noise pro- E [A(r)I&'g('a - lIdrJ < :)c. (12)
cess in the presence of additive white Gaussian noise. His
approximation became more accurate as impulse response In order that (12) be true even when A•, is a constant
of the shot noise became more narrow and more closely random variable, we assume that
resembled the underlying point process. Most recently,
Helstrom and Ho [121 have successfully applied numeri- /A(r)le'g(') - I Idr < oc, for all w E IR. (13)
cal contour integration to the inversion of the shot-noise J
characteristic function to obtain the shot-noise cumulative Remark: A sufficient condition for (13) to hold is that
distribution in the case when additive Gaussian noise is the integral of A over the support of g be finite. For exam-
present. pIe, consider a temporal Poisson process with A(r) = 0 for

7 < 0. Let h be a causal impulse response, i.e., h(t, r) = 0
IV. SHOT-NOISE CIIARACTERISTIC FUNCTIONS for r > t. Then with g(r) = h(t, r) for some fixed t > 0,

the integral in (13) becomes
In the remainder of the paper we fix t. set g(r) :=

h(t. r). and focus on the random variable j t A(r)Iewh(t) 11d7.

y "= A•9(T•). Clearly, this integral will be finite for every t > 0 and every

u E IR assuming only that A is locally integrable.
The characteristic function of Y is [22, p. 170], In view of (11), we set

S= E[e ] = exp((w)), == A(r)[de" - 1] dr (14)

where

)= J A()[;A(Wg(r)) - 1] dr, (10) so that we can write
./ ,~~~(w) = ~/0•a).(15)

and ,.A is the common characteristic function of the {A•}.
To analyze (14), we proceed as follows. We first define two

Remark: If we had added Gaussian noise in the defi- measures,

nition of Y, then the characteristic function of Y would A(D) := [A(r)dr,
have decayed like e- 1 2 , where (72 is the variance of the JD
t;aussian noise. In this case. Y would have an infinitely where D is any Borel subset of the euclidean space on
(ifferentiable density, and the method of Section II would which the underlying Poisson process lives, and

applý[ r(C) := A({r:9(r) EC}),The purpose of this section is to ive conditions under

which we can write '(w) = -B + ,(w), where 0(w) - 0 where C is any Borel subset of 1R.
,a, ,; 1 -. x. It will then follow that the density of Y Remark: If A(D) < oo for some set D, then
contains an impulse of strength e-B at the origin. We
will also identify the constant B and the inverse Fourier A({r g(r) E C) n D) (16)
transform of 4,. A(D)
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can be regarded as the conditional probability of the event then tk(w) -- 0 as jwj - oo by the Riemann-Lebesgue
{g(Ti) E C} given that exactly one Poisson-distributed Lemma. It then follows that ýO(w) - e-B as 1wI - oo, and
point occurs in D. If {r:g(r) E C} C D, then (16) reduces therefore the density of Y contains an impulse of strength
to r(C)/A(D). e-B at the origin.

An analogous development can be carried out for theWe now apply the change-of-variable formula for mea- moment-generating function of Y,

sures [4, p. 219, Theorem 16.12] to (14) to obtain

j[e T) - I] dA(-r) m(s) := E[e-'] = exp(k(s)),
¢'o(w') -ldA)

where for s E C, k(s) = E[ko(sAu)],
-[ Ik' - 1] dr(O).

[-d - ] 
ko(s) = A(r)[e'19() - 1] dr,

Since the integrand is zero for 0 = 0, we can write
and we assume that for all 01 E IR,

vo ( w) = 0[ e e - 1] d r o ( o ) ,

where ro is the measure defined by ,7g(r);do I

Fo(C) F(C\{O}). Note that when a = 0, this reduces to the weaker assump-
tion that r0(1R) < oo.

If Fo is a finite measure, i.e., if

ro(IR) = A(r) dr < oo,A. Examples
J{, gcii} Let !!. -1 be a norm on IR2. Fix any r > 0, and let q map

then we can set Bo = r0 (IR) and write [0, r] onto [0, 1], where q is nonnegative, continuous, and
strictly decreasing so that q- : [0, 1] - [0, r] exists and

()= -B0 +f e3 d0 (0), is nonnegative, continuous, and strictly decreasing. Set
.- w)o• +g(r) = q(llrjl) for Ilrll _< r and set g(r) = 0 for Ilrll > r.

Since
If Fo has a density "0, then we can write

g('> !=* ljl<q-'(O), 0<_9<1,

'O(O) = -Bo + eJ 9 -t7 o(0)dO. (17)

I'-3 the definition of Fo yields

Proposition 2: If F0 is a finite measure with density -yo,
then + e'O e7(O) dO, Fo(O, oo) = I(e) (r)dr, 0 < 0 < 1,

1,00- 
wherewhere DO ={ • :l'lq:O}

B = Bo . P(A,, > 0), D(O) r E IR 2 < <

and Since g is nonnegative, r0 (o, oo) = B0 for 0 < 0, and since
nl)(o/A.) the maximum value of g is 1, Fo(O, oo) = 0 for 9 > 1. The

():= E I(AA,, 1A..>01 (18) density of Fo is yo(0) = -(d/dO)Fo(O, oo). We next let

is integrable; the symbol I is the indicator function of the A(r) = u(llrll2),
specified set.

Proof: First, since yo is integrable, Tonelli's Theorem where u: [0, oc) - [0, oo). If11 is the usual euclidean

and a change of variable imply that 7 is integrable. Next, norm, then changing to polar coordinates yields

substitute (17) into (15) and break up the expectation over q' (9)
the events {A1 = 0} and {A4, > 0}. Make a change of r 0 (0,oo) = 27r/ u(p 2 )pdp, 0 < 0 < 1.
variable and then use Fubini's Theorem. - JO

If we now set If U is an antiderivative of u, then

-B+V(w) = -e y ((O)dO, (19) dU(p2) = 2pu(p2 ),
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and The real and imaginary parts of Fr(x) are Fresnel integrals,
and are easily computed with the NAG library subroutines

Fo(0,c) = ir[U(q-(O)2 ) - U(O)], 0<0<. S20ADF and S20ACF, respectively. In addition, for s>0,

For example, the Gaussian intensity, A(r) = exp(-11rJ12), we can write

corresponds to u(p) = e-P and U(p) - -e-P. In this case, ko(s) = 7r e e-e(z)

r 0( ,, = 7r(1 - e- q-1 ( )) 0 < 0 < 1. la

1 - ejq(z)

The Cauchy intensity, A(r) = 1/(1 + IH-112), corresponds to sb
u(p) = 1/(l + p) and U(p) = ln(1 + p), yielding +e2q(z)_w-7"-'I,+ 2-Daw(,/;sqtZ) q

F0(0, xý) = 7rln(l + q- (0) 2 ), 0<0< 1. qJ

where
The constant intensity. A(r) = 1, corresponds to u(p) = 1 Daw(x) = e- 2  e dO
and U(p) = p, resulting in fo

ro(0, o-) = rq- 1()2, 0 <0< 1. is Dawson's integral, and is easily computed with the NAG
library subroutine S15AFF.

Example 2: Consider the piecewise quadratic function Example 3: Let q be as in (20) with z = 1 and a = 1.

( -aX 2 , 0< X < This results in

q(.) = b(1-X) 2, -<< 0 q-)(O) = V/-, 0<0< 1.

where a > 0, b > 0, and 0 < z < I are given. If 0 < - < 1, If A(r) is the Cauchy intensity mentioned earlier, then
we see from (20) that q(0) = 1, q(1) = 0, and q'(0) = F0(0, oc) = 7rln(2-0), 0<0< 1,
q'(l) = 0. Ifa = b/(b- 1) and z = b/(a + b), then q will
be continuously differentiable at z, and thus q will be a 70(0) = ir/(2 - 0), 0 < 0 < 1,
quadratic spline on [0, 1], an example of which is shown in and for w > 0,
Fig. 4. Now, I1 eJwOo

1- 0V/"b, 0<O<q(z), 0o(w) = -7rln2+7r _ dOq-,(o) = V/(l -1 O)l/a, q(z) <ý 0 < 1, 1 -

and fA(r)- 1, (1-= -7rln2+reJ2, 2w-e-j@ dO.

_ •r(l - 2\/'+0/b), 0< q(,), The real and imaginary parts of this last integral are given
F0 (O, I) - 0)/a, 01b ) 0 0 < 1, by

tr(l - )/a, q(z) 1< 0 < 1, Ci(2w) - Ci(w) and Si(w) - Si(2w),

and respectively, where

"•( r((0/b)-/2 - 1)/b, 0<0< q(z), Ci(w) := C+lnw+ cosO - dO,

7r/a, q(z) < 0 < 1. , 0

C ; 0.5772 is Euler's constant, and
Using (17), we find that for w > 0, sin 0 d0

{ _eJ,- Si(w) -= ] d. 0

, =jwa The funcLions Ci and Si are easily computed with the NAG

I - eJ-q(z) library subroutines S13ACF and S13ADF, respectively. In
+ jab addition, for s > 0,

+2- q(_z) Fr(z) 11, (21 ko(s) = -7ln2+re2 ,'[El(s)-El(2s)],

V b -x where

where x = ,/2q(.)w/-,. and EI(,) := 0--dO, z > 0,

Fr(x) " e j 02)d0 is the exponential integral, and is easily computed with theS2exp(j . NAG library subroutine SI3AAF.
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Ezample 4 (Morris [17]): For r = (z, y) E IR', set is nonatomic, and

1-I, = < 1, lyl < 1, 0(0) = ei 'dP(z)
0(r) = g(z,j) = { otherwise, f_00

=E[d'- lvY }
and let A(r) = (N7/2)g(r). Then 1fl

= p(w) --e- B

Fo(0, ) = N7 ,(1 -0)(1 +o), 0<o<1 = eB[e< (,)_-].

and
to(0) = 2 7 r0, 0 < 0 < 1. Since V(w) -- 0, *(w) ; e-Bý'(w) for large 1wj. Further-

Note that Bo = Fo(IR) F=(Ox) = N'r. Using (17), more, 'k can decay very slowly for shot-noise processes.
Recalling Kummer's Comparison Method [11, p. 195], we

Bo + e12 sin(w/2) + jsin(w/2) write

w12/ w12 e-B eT( - ,7(w) - 1] +-jcos(w/2)'Y], w•O.
where the term in brackets decays like k(W) 2/2. Substi-

Also, for s 9 0, tuting 'Lis into (3), we find that

ko(s) = BoI-+ 2 (le 2 1)]s p(y, oo) = e-B[Gc(y)+ 7(y)], (23)

where

Example 5: Let q(x) = exp(-px-2 ), where p > 0. If we
regard q as mapping [0, oo) onto (0, 1], then Gy L)G c(y ) : = li ra 1 b ,,[ e " ..)- (n r / L ) -l] e- jn y/L '

1 n.___00 <8< 1
q-1(0) -lýn 010 0 I =o

-p and

If A(r) is the Gaussian intensity mentioned earlier, then 17(Y) lim E b"•(n r/L)e-j-.y/L"
00

Fo(0.x.) = r(1 -0I/p), 0<0< 1, L =-oo

and From (22) and (23) it follows that
101o) = 0'8•', 0<0<1.

P { e-B[GC(y) + rI(y)], y > 0,
Clearly, if p = I/n for some positive integer n, then on P(Y > y) = -
[0. 1], j,)(0) is a polynomial of degree n- 1, and (17) can be GC(y) + Yi(y) + 11, y <0.

evaluated in closed form using integration by parts. How- Fortunately, we can evaluate the limit defining q to obtain
ever, if p > 1, then 70(0+) will not be finite; for example,
if p = 2, -o will exhibit l/V' behavior as in Example 2.

'1(y) - y,(0) d0;
Remark If z = I and a = 1 in Example 2, and if

p =I in Example 5, then the resulting -yo functions are this follows by applying (3) to the measure whose density
the same, 7o(0) = 7r. If p = 1/2 in Example 5, and if is y(8) and by noting that the corresponding characteristic
N, = r in Example 4, then the -to functions are again the function is given by (19).same, 70(0) = 2ir0. fnto sgvnb 1)

We now observe that if Gc is absolutely continuous, then
F(y) = 1 - P(Y > y) has density

. StIOT-NOISE CUMULATIVE DISTRIBUTIONS AND
DENSITIES r

f(y) = e-8 6 (y) +7(y)- d(y)y- . (24)
Let F denote the cumulative probability distribution of I

Y. We assume that F is continuous everywhere except the Remark: Equation (24) generalizes to
origin, where it has a jump discontinuity of size e-B. Then

h s (C) = P(Y E C and Y $ 0) (22) 1(Y) = e- 6(y)+y(y)+ -'v(y)-
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where y" is the convolution of y with itself i times, and It is easily verified numerically that the maximum value of
7s - ko(s) is greater than 12 and occurs at s - 3. This

-y = im 0 bn[er/L)- rn - ]e-inT'/L yields the bound e- 12 < 6.2 x 10-6. Turning now to (25),
G( L-- i=0 i we take N = 256. An FFT provided 93 samples ofG'N in

"the interval [0, 5.01]. We then fit a spline with 64 uniformly

To approximate the last term in (24), we fit a cubic spaced knots in the proper subinterval [.01,5]. A plot of
spline to minus the derivative of this spline is shown in Fig. 5. There

appear to be corners at 1/2 and 1. To confirm this. we
N plotted minus the second derivative in Fig. 6. Clearly,

GL,(y) := bn[e'"'I"L - •,(n#/L) - 1]e-nTY/L there is a large downward jump at I but only a corner at
,,=-N 1/2. In addition, although it is difficult to see, there is a

(25) jump at 2; just as there are oscillations on both sides of
and then differentiate. Note that even if V,(w) decays like the jump at 1, there are telltale oscillations on both sides
l/V", as it does in Example 2 if we assume AL = 1 with of 2. If we add a single knot at .5 and double knots at
probability 1, the coefficients in (25) decay like 1/n 2 , and 1 and 2, and recompute the curve in Fig. 6, we obtain
so as N -. c, GLN converges to a continuous function. the curve in Fig. 7. Notice how the oscillations around
Thus, for finite N, (25) will not exhibit Gibbs phenomenon. 1 and 2 have disappeared. Based on these observations,
Of course, if we were to differentiate (25), the new series we selected a new set of 21 nonuniformly spaced knots,
coefficients would decay like 1/n, and Gibbs phenomenon including a single knot at .5 and double knots at 1 and
would appear. By fitting a spline with appropriately cho- 2. Using the original 93 samples of G'N, we fitted a new
sen knots to G.N and then differentiating, we can avoid spline with the set of 21 knots. After differentiating and
the Gibbs oscillations. negating, we obtained the curve shown in Fig. 8. If we add

7(y) to this curve and multiply by e-B (cf. (24)), we obtain
.4. Error Bounds the graph in Fig. 9. For comparison, we have also plotted

with a dashed line the 256-point FFT approximation of
By taking L finite in the first sum in (23) we see (y) obtained via equation (8). The impulse at the origin

that there are two sources of error. The first one can is not shown in the figures.
be bounded by looking at the measure corresponding to

- e , i.e., to i itself as was done in Section II. The Example 3 Continued: Proceeding as in the previous ex-
second source can be bounded by looking at the measure ample, again with L = 7, LI = 0, and L2 = 5, we ob-
corresponding to 4(w), i.e., to the measure whose den- tain the error bound e-3 6

1 < 1.8 x 10-4. With N = 256
sity is 1. Now, if Jg(r)J is bounded by some constant, there were 93 samples of G'N in the interval [0,5.01]. We
say gmax, then 7o(0) = 0 for 101 > gm.x. Hence, if A, is started by fitting a spline with 64 uniformly spaced knots
a bounded random variable, say A, < a, then by (18), in the subinterval [.01,5]. Upon inspection of the result
,(0) = 0 for 101 > agma), So, if L + L2 > agnax, and if (not shown), we added double knots at I and 2 for a total
- L+ L1 < -0gmax, there will be no error due to the second of 68 knots. A plot of minus the derivative of this spline
source. This will be the case in the following examples. is shown in Fig. 10. Notice that this curve is continuous

with corners at 1 and 2. Based on this curve, we selected
B. Numerical Examples 17 nonuniformly spaced knots, including double knots at

1 and 2. Using the original 93 samples and the new set
In the following examples we take A,, 1 so that i = of 17 knots, we generated a new spline approximation of

v'o, k = k0 , and 7 - 7y N. A plot of eG times the quantity y(y) minus the

Example 2 Continued: Let a = b = 2 and = 1/2. Then derivative of the 17-knot spline is shown in Fig. 11. For
g(r) = q(IlrlJ), where q is the quadratic spline shown in comparison, we have again plotted with a dashed line the
Fig. 4. We first consider the error bounds. Since g(r) > 0, corresponding 256-point FFT approximation of f(y).
t(--,,,0) = 0, and so the upper bound in (4) is zero. We
now take L = 7, LI = 0, and L, = 5. To analyze the lower Example 4 Continued: Let N, = 2. With L = 8, L, = 0,
bound in (5), write and L2 = 6, we obtained an error bound of e- 9 ' < 7.5 x

10-5. With N = 256, there were 98 samples of Gc.N in
/L(L + LI. x) = p(L, -x.) the interval [0,6.06]. We started by fitting a spline with

= P(Y > L, Y $ 0) 50 uniformly spaced knots in the subinterval [.01,6]. Upon
= P(Y > L), since L > 0, observing the result (not shown), we generated a set of 16

L nonuniformly spaced knots, including a double knot at 2.
< e- Lm(s) A plot of e- B times the quantity y(y) minus the derivative

- L-[ L- ks)l of the 16-knot spline is shown in Fig. 12. The jump at I
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is due to the fact that y is not continuous there. Again, Proof: Use induction and Tonelli's Theorem. 0
for comparison, we have plotted with a dashed line the R
corresponding 256-point FFT approximation of f(y). In
[17, Fig. 4(a)], Morris obtained a similar solid curve using measure, fG+ A(r) dr < o. Thus, if g is bounded, H,(0)
an 8192-point FFT. is finite for all n.

(ii) For fixed 0, So(O, v) is a discontinuous function of
v, Sj(0,v) is a continuous function of v, and for n > 2,VI. APPROXIMATION OF 70 AND 11)0 SS(0, v) is an n - 1 times continuously differentiable func-

As we have seen, in order to employ the methods of tion of v.

the previous section, we must be able to compute both Corollary 4: If Ha+1(0) is finite, then the integral in (26)
7 and 0, which can be expressed in terms of 7yo and V'O, is equal to
respectively (cf. (18), (19) and (15)). In this section we n
discuss an approximation scheme to compute both 70 and Z(-jw)k Hk(O) - (_jw),+i eiWGH(0)dO, (29)
ý'0. k=0

We first consider the Fourier integral in (17). Without where H,, is n times continuously differentiable.
loss of generality, we restrict attention to the integral over
the right half line, Rather than compute the integral (26) numerically, it

may be advantageous to use (29) instead, since Hn is
ej -yoo(0) dO. (26) smoother than -o. We propose using H1 in the follow-

ing approximation scheme for computing both -yo and 0-.
While -yo is integrable since it is the density of a finite Assume H2(0) is finite. We compute H 1(0) at just enough
measure, it is still possible to have 7yo(O+) = oo as we points 0 so that we can obtain a good cubic spline approx-
saw in Example 2. Thus, it may be difficult to compute imation of H/. Denote this approximation by H/. Then
this integral numerically. We therefore propose the appli- -HT' will provide a piecewise linear approximation of yo.
cation of integration by parts. However, before doing so, Of course, the approximation will break down near the ori-
it is convenient to introduce the following notation. For gin if To(O+) = oo. To approximate Vo(w) at w = nr/L for
0 > 0, let 11o(0) : = 0o(O, o). (For 0 < 0 we would use n = a,.... N - 1, we use (29) as follows. Set AO = 2L/M

Ho(O) = F(-oo,O).) Since £o is a finite measure with for some M > N. Let H1 denote the piecewise linear ap-
density 10, it immediately follows that for 0 > 0, Hn is proximation of HI satisfying HI(k A0) = H1 (k AO). Then
bounded, continuous, nonincreasing, and decays to zero as if we substitute Hi into (29) and use integration by parts,
0 goes to infinity. Also, H!f(0) = -7o(0) for almost every we obtain
0 > 0. Now set M-1

H0(0) + E ck[dew(k+1)A6 - ej WA]

H,,+i(O) .= - H ((')d(, 0 > 0. (27) k=0

where ck is the slope of fl on the interval (k A0, (k +
Since 110 is nonnegative, H, is always of one sign. 1)A0). Assuming M is large enough that HI((M-I)A0) =

Proposition 3: Let G+ : = {r : g(r) > 0). For v > 0, set H1(M A0) = 0, we will have cM-1 = 0. Then since A0 =
$o(0, t,) = 1(0,)(0), and for n > 1, set 2L/M, if w nw/L, the summation can be evaluated for

n = 0,..., M - 1 with a pair of M-point FFTs.

S, (0, v) (0:v)='/!, 0<0<v, In the continuation of Example 2, we computed ipo ex-
0, 0 > V. actly using (21). We have also repeated those calculations

Then replacing the true values of Oo(nir/L) by the just-described
approximation. The results were graphically indistinguish-

II, (0) = f A(r)Sn(0,g(r))dr, 0 > 0. (28) able from the solid curves already shown. The particulars
JG+ were as follows. Using 64 uniformly spaced knots on the

subinterval [10-7, 1 _ 10-7], we fitted a cubic spline to 96
Furthermore, H,(O) is finite for 0 > 0 if and o: ly if H1(0) uniformly spaced samples of HI from the interval [0, 1]. To
is finite; i.e., if and only if approximate 00 we used M = 1024. Similar results were

also obtained using only 46 nonuniformly spaced samples
S+A(r)g(r)" dr < cc. of H, and 16 nonuniformly spaced knots. (Of course, on

+ a fine enough scale, the approximations of -o break down

If 11,,(0) !s finite, then H, is continuous, H,(O) - 0 as near the origin. For these particular approximations, the
0 -- x, and H'(O) = H,_-.(O) is integrable. breakdown is not visible graphically for 0 > .05.)
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1. INTRODUCTION

When images are produced under high-level illumination, they are often modeled as the sum of
a "signal" image plus signal-independent Gaussian noise. However, when an image is formed under
low-light-level illumination, it can be better modeled as a filtered point process, also known as shot
noise, described as follows.

The process of image acquisition consists of the measurement of arriving photons in the image
plane. In practical situations it is difficult to measure the exact location of the photons since
these are filtered by the finite response of the imaging device. What is measured, instead, is the
superposition of the responses of the imaging system to each arriving photon. This superposition,
measured at a point x E R2, can be described by the random variable

Z(x) = "zh(z-Xv), (1.1)

where {X 1,} denotes the set of positions at which photons are detected, and h represents the impulse

response or point spread function of the imaging device. A block diagram of the imaging system is
shown in Fig. 1.

We consider the following hypothesis-testing problem. Under hypothesis Hi, i = 0, 1, the {X,,}

are points of a two-dimensional Poisson process with nonnegative intensity Ai(x), x E IR2.
Special cases of this problem that have previously been addressed include:

1. The exact locations of the photons are available. This is equivalent to the point spread
function h(x) being equal to a Dirac delta function b(x), in which case one has a detection
problem with Poisson-process observations. When one has Poisson-process observations, the
likelihood ratio (LR) is of course well known [9, p. 94]. In [4], a suboptimal detection scheme
that could be easily implemented was considered. This led to the consideration of a correlation
detector in which the Poisson-process observations were passed through a linear filter (taken
to be one of the intensity functions) and sampled. This led to a hypothesis test based on a
single shot-noise random variable.

2. Counts of photons in disjoint regions are available, and hence one is faced with a Poisson
counting process detection problem. This case can be regarded as a filtered Poisson process
with special form of h, followed by sampling. The LR is well known for this special case also [9,

p. 94]. In [10], a correlation scheme was used for classification. The Poisson counting process
observations (with counts being either 0 or 1 with high probability) were cross-correlated
with various reference functions. Three reference functions were considered, one of which was

constructed so that the value of the correlation between that function and the observed image
approximates the value of the logarithm of the LR.

Little work has been done for the more general case of filtered point-process observations due to
the difficulty of computing the density and distribution functions involved [3].

II. HYPOTHESIS TESTING WITH SHOT-NOISE OBSERVATIONS

A. Preliminary Considerations

Using the mathematical model described in Section I, we would like to decide whether A0 or A,
is the true intensity of the underlying Poisson process that gives rise to our observations {Z(x)}.
Clearly, a likelihood ratio test (LRT) is called for [7, p. 11]. Unfortunately, a formula for the LR of
the continuum of observations {Z(x)} does not seem to be available in the literature. In fact, even
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if we based our decision in a finite number of samples of {Z(x)}, say Z(xl), ... , Z(xK), the LR
would be obtained by inverting the K-variate characteristic function of Z(xl),. . ., Z(xK) under
each hypothesis to obtain the K-variate density under each hypothesis. The quotient of these
densities would yield the LR. This approach is impractical unless K is very small. It is because of
these considerations that we introduce the following suboptimal approach.

B. A Suboptimal Detector

As a suboptimal detector scheme, we propose that the received image {Z(x)} be passed through
a linear filter g (to be chosen later in Section II-E) and then sampled, as shown in Fig. 2. The final
discrimination of hypotheses will be based on the sample T. More precisely, let

Y(x) I g(x- u)Z(u)du, (2.1)

where Z(.) is given by (1.1). (Hlere and in the sequel integrals are understood as being over all of
IR2 unless otherwise indicated. One-dimensional integrals over IR are indicated by ff). Observe
that if we set

o(x) gJ(x- u)h(u)du, (2.2)

then
Y(.) = Z (x- X'). (2.3)

V

Clearly (2.3) has the same form as (1.1). In other words, when the shot-noise process {Z(x)}
is passed through the linear system g, the output {Y(x)} is also a shot-noise process. The final
processing step shown in Fig. 2 is sampling. We set

T 1 Y(0) --- Z (-X,), (2.4)

and perform an LRT based on T.

C. The Likelihood Ratio for T

Let F,(t) -___ P,(T < t), i = 0, 1, be the cumulative probability distribution of T given that A,
is the true intensity of the underlying Poisson process that models the location at which arriving
photons strike the imaging system. Clearly, if no photons arrive, T = 0. The probability of this
event is

P =(T 0) = e-A

where

A, A (x) dx.

In our applications we have Ai < oo. We thus expect Fi(t) to have the form

( 00 f(r)dr, t < 0,F,(t) = j '•+o J d,Ž (2.5)
e- A, + ] f(T-)dr, t >_ 0,

for some nonnegative f, satisfying

•fV)dr = I-e-
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Remark: In general Fi(t) could have jumps at points t $ 0, depending on the behavior of 0. In
our examples, this does not occur.

Assuming equally likely hypotheses, if we observe T = t, we perform the LRT

( Hi
A0 -A 1  > 0, t=0,

O (2.6)
fW(t) HI
__ _ > 1, t O

fo(t) Ho<

The numerical calculation of fo and fi is discussed in Appendix A.

D. The Probability of Error

The probability of error incurred using the LRT (2.6) is denoted by P,; we can write an expression
for Pe as follows. First, let Do denote the set of t such that we decide in favor of Ho. Clearly,
0 E Do if and only if A0 < A1. For t $ 0, t E Do if and only if fo(t) < f1 (t). Let D1 denote the
complement of Do. We write D1 = D'. Then, under equally likely hypotheses,

P, = 1{ I[T E Do] + Po[T E D]}

= {1 + JodFI(t) - dFo(t)I}. (2.7)

Let IA(t) denote the indicator function of a set A. In other words, IA(t) = 1 if t E A and IA(t) = 0
otherwise. Using (2.7) and (2.5) we can then write

Pe = -{1 + [e-A.- e-Ao]IDo(O) + I~f{O}cf(t- fo(t))dt}

1 {1 + [e-A'- e-Ao]ID(O) + fD(fi(t) - fo(t))dt}. (2.8)

In our applications, Do will turn out to be an interval, or a union of disjoint intervals. Hence the
last term in (2.8) can easily be computed if we have a simple way to evaluate

G =) (r) dr. (2.9)

We discuss this further in Appendix B.

E. Selecting the Filter g

Ideally we would like to select g to minimize the probability of a decision error, Pe. Since the
dependence of P, on g is not readily apparent, we introduce the following ad-hoc criterion for
selecting g. We would like to choose g to maximize the generalized "signal-to-noise ratio" (cf. [1,
eq. (18)], [2, eq. (6)])

(Pi - po)2
a + a , (2.10)

where pi and ao are the mean and variance of T under hypothesis i = 0, 1. Since Y in (2.3) is a
shot-noise process, it follows from (2.4) and [5, pp. 382-383] that

Pi Ei[T]

- fo(-x)A,(x)dx, (2.11)
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and

SEi[(T -_ ,)2]

J(X)2A (x) dx (2.12)

Using (2.11) and (2.12), it follows from the Cauchy-Schwarz inequality that 0 maximizes (2.10) if
and only if

Ai(z) - Ao(x)(-)= C A(z)+Ao(x)' (2.13)

where c is an arbitrary constant. Using (2.2), (2.13) then becomes

g(-x - u)h(u)du = c A,(X) - Ao(X) (2.14)

Unfortunately, (2.14) may not have a solution. For example, if g and h are square integrable, the
left-hand side of (2.14) will be a continuous function of x, while the right-hand side need not be, as
is the case in our examples in Section III-C. In order to avoid this problem, we a priori constrain
g to be of the form

K

g(x) = y wkbf(x + Xk), (2.15)
k=1

where K and the locations Xl,..., XK are chosen in some heuristic fashion, perhaps as a uniform
grid, and the weights are chosen to maximize (2.10). Observe that if (2.15) holds, then it follows
from (2.1) that

K
Y(x) = WkZ(x +Xk),

k=1

and thus
K

T _ Y(O) = ZwkZ(xk),
k=1

i.e., the test statistic T is a weighted superposition of the measurements Z(xI),..., Z(XK). Now, let
w = [wI,...,WK]' and Z • [Z(xl),...,Z(XK)]'. Let mi = E[Z] and ri ! Ei[(z - mi)(Z- mj)'].
Then T = w'Z, and

pi = w'mi and a = w'riw, (2.16)

where the kth entry of the vector mi is (cf. (2.11))

J h(Xk - x)Aj(x) dx (2.17)

and the kt entry of the matrix ri is (cf. (2.12))

J h(xk - x)h(zx - x)Ai(x) dx. (2.18)

Letting rn = rn, - mo and r = ro + ri, we see that under the constraint (2.15), (2.10) becomes

Iw'm12 (2.19)
w,rw

By the Cauchy-Schwarz inequality, w maximizes (2.19) if and only if rw = cm, where c is an
arbitrary constant. For the numerical examples in Section III-C we take c = 1, and rw = m is
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easily solved using the NAG routine F04ASF. The NAG routine D01FCF is used to compute (2.17)
and (2.18).

Remark: One of the reviewers has suggested selecting g so that

X(-X) = Jg(-x-u)h(u)du = In A1(x) (2.20)AXo(x)'

the idea being that (2.4) would then be equal (up to an additive constant) to the logarithm of the
LR of the point process itself. A related idea was used in [10]. Unfortunately, (2.20) may not have
a solution for the same reasons given following (2.14).

Ill. HYPOTHESIS TESTING AND ERROR PERFORMANCE

In this section we apply the preceding ideas to several examples. For comparison, we also discuss
the consequences of assuming that T has a Gaussian distribution under each hypothesis; this
assumption was used, under somewhat higher light levels, in [4, 10] based on the Central Limit
Theorem. Under certain conditions this approximation is adequate [6], and it avoids the burden
of computing fi(t) and Gi(t) by the numerical evaluation of inverse Fourier transforms. However,
under the low-light-level conditions considered here, we do not expect the Gaussian approximation
to work well, and this is indeed the case.

A. Likelihood Ratio Test

Following the observation T = t, the LRT is given by (2.6). In the numerical examples discussed
below, we plot fo(t) and fl(t) (Figs. 4-6) and see that the equation

f, (t) = 1

fo(t)

has at most one solution of interest, denoted by 77. Hence, if t # 0, the LRT reduces to the single
threshold test H1

t > 77.
HO

B. Gaussian Test (GT)

A simple test to write down is the following. Let

pi(t) & 1 etltu) 2/2o',, (3.1)

where pi and ?2 are given by (2.16). In other words, we are assuming that T is normal, but with
the correct mean and variance. We consider the test

> 1.
po(t) <

HO

In the examples discussed below, a? > a', and the decision regions for this test are easily shown
to be

Do jtER :---b<t<7--b and Di = D•,o -t a0
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where a a2 - 2 b = - ,and

f 2 2  a2 b20 1 T

In the examples discussed below, the integrals f-b/a pi(t) dt are negligible, and so we consider
the following single-threshold test. We set 7t = y-b/a and use Do = 1,). Even with this choice
of Do, the probability of error is given by (2.8), which requires complicated numerical integration
as discussed in Appendix B. However, we also consider PGe, the "Gaussian approximation" of Pe,
that we define by

= 7 p p(t)dt + po(t)dt}.

In the examples below, PGC was computed easily with the NAG routine S15ABF for evaluating the
cumulative distribution of the standard normal density.

C. Examples

We compare the error performance of the two tests in three examples. In each example we
consider three cases, sampling at K = 1, 5, and 10 points. For this purpose, let

1? = {x=(u,v):0<u<landO<v<l},

Ao(x) = { coIo(x) +n, xEZR,
1 O, x ý ,

Az~ f clte(x) +n, xE R,S 0, x ý 1z,

h(x) = e°50(u 2+v2),

where Io(x) and Ie(x) are the indicator functions of the shaded regions in Fig. 3, and n is a constant
background level. The sampling points, xi,..., x1o, are shown in Fig. 4 and are explicitly listed in
Table I.

TABLE I

THE SAMPLING POINTS

k Xk k Xk

1 (0.5,0.5) 6 (0.275,0.825)
2 (0.7,0.175) 7 (0.5,0.65)
3 (0.725,0.325) 8 (0.725,0.5)
4 (0.725,0.825) 9 (0.5,0.325)
5 (0.275,0.5) 10 (0.5,0.175)

When K = 1, we set w, = I and hence T = Z(xl).

Example 1: In this example co = cl = 100 and n = 10. Then A0 = 43.00 and A, = 44.87. The
weights {wk} for the case K = 5 are 1.100019, 2.603646x 10-1, -8.424318x 10-1, -1.044526x 10-2,
-8.713632 x 10-2, and for K = 10, 1.191592, 3.038038 x 10-1, -9.131236 x 10-1, 4.417913 x 10-3,
- 7.798749 x 10-2, 1.564578 x 10-2, -2.080950 x 10-1, 9.888259 x 10-2, -9.350529x 10-2, 4.023416 x
10-'. Table II contains the means and variances of the filtered point process for the three cases.
Table III contains the thresholds for the two tests under consideration, the corresponding decision
regions Do and probabilities of error. The value of PGe is also included. A plot of fo and fI for
each case is shown in Fig. 5.
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TABLE II
PARAMETERS FOR EXAMPLE I

K =1 K =5 K=10

Pso 1.52 -1.27 -1.38
ao7 0.422 1.53 1.61

LI 4.40 3.25 3.21
aT 2.58 2.98 2.99

TABLE III
TEST PERFORMANCE IN EXAMPLE 1

K Test 77 Do Pe PGe
1 LRT 2.57 [0, 77) 0.0936 -

GT 2.65 [0, ir) 0.0949 0.0887
5 LRT 0.720 (-oo,7?) 0.0523 -

GT 0.773 (-oo, q}) 0.0525 0.0628
10 LRT 0.650 (-oo, q) 0.0506 -

GT 0.706 (-oo,iy) 0.0507 0.0617

From Table III, we see that a reduction of 44.1% in P, is obtained for the LRT when using K = 5
instead of K = 1, and a further reduction of 3.25% is obtained by using K = 10.

Example 2: In this example co = c, = 50 and n = 5. Then A0 = 21.5 and A1 = 22.4. The weights

{wk} for the case K = 5 are 1.100019, 2.603646 x 10-1, -8.424318 x 10-', -1.044526 x 10-2,
-8.713632 x 10-2, and for K = 10, 1.191592, 3.038038 x 10-1, -9.131236 x 10-1, 4.417913 x 10-3,
-7.798749 x 10-2, 1.564578 x 10-2, -2.080950 x 10-1, 9.888259 x 10-2, -9.350529 x 10-2, 4.023416 x
10'. Table IV contains the means and variances of the filtered point process for the three cases.

Table V contains the thresholds for the two tests under consideration, the corresponding decision
regions Do and probabilities of error. The value of PG, is also included. A plot of fo and f, for
each case is shown in Fig. 6.

TABLE IV
PARAMETERS FOR EXAMPLE 2

K = 1 K = 5 K = 10
mo 0.759 -0.63 -0.691l

ao 0.211 0.760 0.800

ml 2.20 1.62 1.601

ol1 1.29 1.49 1.50

TABLE V
TEST PERFORMANCE IN EXAMPLE 2

K Test r, Do Pe Pae

1 LRT 1.29 [0, q) 0.177 -
GT 1.44 [0,77) 0.182 0.157

5 LRT 0.389 (-0c, q) 0.129 -
GT 0.464 (-oo, q) 0.129 0.138

10 LRT 0.360 (-oc,17) 0.126 -

GT 0.423 (-o0,17) 0.127 0.137
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From Table V, we see that a reduction of 27.1% in Pe is obtained for the LRT when using K = 5
instead of K = 1, and a further reduction of 2.32% is obtained by using K = 10.

Example 3: In this example co = cl = 16 and n = 5. Then A0 = 10.28 and A, = 10.58.
The weights {wk} for the case K = 5 are 7.590372 x 10-', 1.791687 x 10-', -5.971229 x 10-1,
-8.206410x 10-3, -5.151747x 10-2, and for K = 10, 8.767560x 10-', 2.073143x 10-1, -6.4G2233x
10-', '7.654726 x 10-3, -4.801134 x 10-2, 1.534052 x 10-2, -1.978471 x 10-', 7.396542 x 10-2,
-1.243330 x 10-', 2.736930 x 10-2. Table VI contains the means and variances of the filtered point
process for the three cases. Table VII contains the thresholds for Lhe two tests under consideration,
the corresponding decision regions Do and probabilities of error. The value of PGe is also included.
A plot of fo and f, for each case is shown in Fig. 7.

TABLE VI
PARAMETERS FOR ExMAPLE 3

K = 1 KK =10]
m0 0.457 -0.0894 -0.122

o 0.174 0.199 0.204
m1  0.918 0.414 0.398

or 0.518 0.305 0.316

TABLE VII
TEST PERFORMANCE IN EXAMPLE 3

K Test [ rj Do PC PG,
1 LRT 0.675 10, q) 0.335 -

GT 1 0.893 [0, 77) 0.348 0.310
5 LRT 0.188 (-oo,ir) 0.312 -

CT 0.236 (-x, q) 0.313 0.303
10 LRT 0.172 (-oc,q) 0.309 -

GT 0.212 (-ox,7q) 0.311 0.300

From Table VII, we see that a reduction of 6.87% in P, is obtained for the LRT when using K = 5
instead of K = 1, and a further reduction of 0.962% is obtained by using "/= 10.

IV. DISCUSSION AND CONCLUSION

We have treated image detection at low light levels as a binary hypothesis-testing problem based
on a 1-dimensional test statistic. This statistic was obtained by filtering the received image and then
sampling at one point. The filter we used was obtained by maximizing an ad-hoc signal-to-noise
ratio. In the examples we considered, we found that the largest weights of the filter (for the cases
K - 5 and K = 10) correspond to the locations where the "o" and the "e" do not overlap. This
makes intuitive sense: at xi the "e" is prcsent and w, is the largest positive weight; at Z3 the "o" is
present and w3 is the largest-magnitude negative weight. Since x, and x 3 are the most important
points for discrimination between H0 and HI, we observed little ii.iprovement in peformance when
using K = 10 instead of K = 5. The lower the intensity of the point process, the harder it
is to discriminate between the hypotheses. The samples in Example 3 bear less information for
discrimination than those in the other two examples. This resulted in a much smaller improvement
in performance in Example 3 than in the other two examples when going from A = 1 to K = 5. We
compared our LRT with a test that uses Gaussian densities. From the rsults of the examples, it is
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clear that the distribution function of T is not Gaussian under either hypothesis (see Figures 5-7).
It is interesting to observe, though, that the probability of error Pe is very similar for the two tests,
i.e., P, is not very sensitive to the value of q/. We note that the Gaussian approximation PGe of the
probability of error is neither an upper nor a lower bound for Pe since sometimes it over predicts
(by 21.9% in Example 1, K = 10) and sometimes it under predicts (by 11.3% in Example 2, K = 1)
the value of Pe. Hence, PGe is not a reliable quantity for estimating Pe.

Further research should be devoted in studying the behavior of Pe as a function of the weights
{wk}, as a function of the sampling points {xk}, and as a function of the total number of weights
of the filter g. It is very important that fast and accurate methods be found in order to compute
the functions fi(t) and Gi(t), since straightforward applications of numerical integration are rather
time consuming.

APPENDIX A
EVALUATION OF THE LIKELIHOOD RATIO

In order to perform the test (2.6), we need to compute the "density" function of T under each
hypothesis. Loosely speaking, this can be accomplished by computing the inverse Fourier trans-
form of the characteristic function of T. Several methods have been proposed (see [3] and the
references therein) for carrying out this computation. Our numerical solution relies on the use of
the quadrature subroutines DO1FCF and DO1AMF from the NAG library.

For the purpose of computing the LR function and the probability of error for the test (2.6), we
introduce the moment generating function of T, denoted by Mi(s); it is given by [5, p. 381]

Mi(s) - [EJC.Tj

exp{J A(x)[es(-z) - l]dx}. (A.1)

From (2.5) it follows that
Mi(s) = e-A. + Ki(s), (A.2)

where
K s) •= -- CIO e't fi(t) dt. (A .3)

With s = a + jw, let

= Re Ai(x)es9(-x)dx

-f Ai(x)e9(x)cos(wý(-x)) dx,

and

S,(W) Im Ai(x)e'§(-x)dx

- J A,(x)eaj(-x) sin(wý(-x)) dx.

We compute C'(w) and S'(w) numerically using the NAG routine D01FCF. If we set s = jw in
(A.3) and take inverse Fourier transforms, we obtain, since Re{K,(jw)eJwt} is an even function of

MO j e- (A -C,(w)) cos(Si(w) - W•) - e-A, cos(wt)} du, (A.4)

where, for convenience of notation, we write Ci and Si instead of Cý' and Sq' when a = 0.
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APPENDIX B
EVALUATION OF THE PROBABILITY OF ERROR

In order to compute Pe, we first need to compute (2.9). To this end, let G,(s) denote the Laplace
transform of Gi. More precisely,

=is ýýf Gj(t)e-tdt, Refs) < 0. (B.1)

Assuming that
lim e" tGi(t) = 0, Re{s} < 0,

which is true in our applications, integration by parts yields

G,(s) = -- K,(s). (B.2)

Combining (B.2) with (A.2) and (A.1), we can substitute in (B.1) and take inverse Fourier trans-
forms (after writing s = a + jw, with a < 0), to obtain

Gi(t) = Q 0-Qt(tIw, (B.3)7r OF a2 + W2d,(B3

where

Q (t, w) = e-C(a-))[a cos(S['(w) I wt) + w sin(Sf'(w) - wt)]

- eA,(acos(wt) - wsin(wt)).

The integrals (A.4) and (B.3) are computed numerically using the NAG routine DO1AMF.
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Abstract - A tutorial development of wavelet transforms for A. What are Wavelets?
discrete-time periodic signals is presented using only basic con-epsfrom linear algebra. Like the discrete Fourier transform, Let X0 denote the space of discrete-time signals xo(n)
cepts wroelear are the ticee u rierators with period N, where N is a power of 2. Before defining
these wavelet transforms are shown to be unitary operators that wavelets, recall that from the theory of discrete Fourier
exhibit frequency-localization properties. They are also shown wavefets, ry thal fo E to of disxrete as
to exhibit time-localization properties and to be well suited for transforms, every signal z0 E X0 can be expressed as
signal-compression applications. Wavelet transforms for im- N-i
ages. i.e., matrices, are briefly discussed. Wavelet transforms zo(n) = F (zo, Ea)Ek(n),
are constructed that are fast in the sense that their complex- k=0
ity is no greater than that of the corresponding fast Fourier
transform. where

E =(n) =

N-I

I. INTRODUCTION (X0, yo) E x zo(n)yo(n),
rn=0

rhe study of wavelets has drawn considerable attention and the overbar denotes the complex conjugate. The rea-
from the signal processing community since the appearance son the decomposition works is that the signals {Ek}jt=
of the papers by Daubechies [2, 3] and Mallat [8, 9. 10]. form an orthonormal basis for Xo. While direct computa-
'nfortunately, a complete understanding of their work re- tion of the Fourier coefficients,

quires a solid background in functional analysis. However,
just as the discrete Fourier transform for finite-length data N-1

records can be rigorously derived using only concepts from (z0, Ek) - v" zo(n)e,=*0

linear algebra, we do the same for wavelet transforms in

this tutorial. It is hoped that by restricting attention to for k = 0,..., N - I would require N 2 multiplications, the
this finite-dimensional framework, the presentation will be fast Fourier transform can compute these coefficients with
more accessible. order N log 2 N multiplications.

There are certain differences between continuous-time, In this paper we consider orthonormal "wavelet" bases
infinite-dimensional wavelets and the finite-dimensional, for X0 consisting of signals Oji(n) and cpi(n). For w',,
discrete-time wavelets considered here. For example, the j = 1,....J and for each j, i = 0,...,N/2 - 1. For
analog of v'o(t) = v/'2_Vj+t.0(2t) [2, p. 958] does not hold lpi, i = 0, ... , N/2" - 1. Since these signals form an
here. Another difference is that in the infinite-dimensional orthonormal basis, every z 0 E X0 can be written in the
case. one deals with a single pair of operators, G and H, form
while for discrete-time periodic signals we have a sequence
of operators, G, and Hi. Furthermore, instead of expres- . NI2'-t

sions such as (G')": [2, p. 947], we consider expressions xo(n) = E( E (zo,ki),i(n)
of the form G; ... G,*_,.z; in the former case, there is the =t i=0(

recursion. (G*).- = G*((G*)- I:], while for us there is no N/ 2 i-I

simple recursion toobtain G* . . .G,_ I zfrom G; . . .G 2 z + j (to, •oj)'., 1 (n).

Fortunately. these differences do more to reveal the struc- i=o

ture of wavelet transforms than to complicate our devel- The signals cik are called wavelets, and the signals vii are
opment. called scaling functions; examples for the case N = 128

Tutorials that discuss continuous-time wavelets and re- and J = 5 are shown in Figs. 1-6. The numbers (zo, V,,,)
lated topics can be found in [5, 6, 13, 15]. Extensive bib and (zo,dji) are called wavelet coefficients, and the fast

liographies are contained in [5, 6, 13]. wavelet transform is an algorithm for computing them with
fewer than N 2 multiplications; in some cases this can be

done with order N log 2 N multiplications.
This work was supported in part by the Air Force Office of Scien- We now compare and contrast the sinusoidal basis func-

tific Researrh under Grant AFOSR-90-0181.
The authors are with the Department of Electrical and Computer tions E& with the wavelets , and so,. The constant func-

Fngine'ering. t'niversity of Wisconsin. Madison. W1 53706. tion, Eo(n) - l/V/N, exhibits no variation at all, while the
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signals pjj(n) exhibit the least variation of all the wavelet Now, if X is a third inner-product space, and if G: X - U
signals. At the other extreme, the signal EN-I(n) exhibits and H: X -- V, are linear operators, we define the map-
the most variation of all the sinusoids Ek(n), while the sig- ping T: X - U x V by
nals VI'i(n) exhibit the most variation of all the wavelet
signals. One important difference between the wavelets in Tx G [ ]x= [¶x (2)
Figs. 1-6 and the sinusoids Ek is that the 0ii(n) are zero L H H "
for most values of n. For example, in Fig. 1, we see that
01, 2 (n) is nonzero only for n = 2,3,4,5. Thus, looking Next, if the adjoint operators G*: U -- X and H*: V - X

at wavelet coefficients can help us localize high-variation exist, then the adjoint T°: U x V - X also exists and is

features in time rather precisely. Slower-varying signals given by

cannot be localized as well.
[G H-] = 'u + H'v.

B. Outline of the Paper I

Our interest is in isometries; i.e., operators that preserveThe remainder of the paper is organized as follows. In ineprdcsorquvltyprarsfrwchT

Section il we focus on the basic properties of pyramid- inner products, or equivalently, operators for which T*T =

type algorithms [1], which will be the key to defining and 1. For such operators, z can obviously be recovered from

computing wavelet transforms in Section III. In particu- T mr klar wesho tat uchalorihmsar naura vhices or Remark: If T'T = I and T is onto, then TT" = I as
lar. we show that such algorithms are natural vehicles foris said to be unitary. Of
frequency localization and for signal compression. We also course, if dim X = dim U x V < oo, then T'T = I always
show how these algorithms interact with shift operators to implies TTo = 1, since in this case T is 1-to-I if and only
exhibit time-localization behavior.T is onto [7, p. 81].

In Section III we define wavelet transforms for discrete- if T is ont f7, p8
time periodic signals. We then define the corresponding For tur referencent th
wavelet bases in Section III-A. In Section III-B we dis- (2), TT = I is equivalent to
cuss fast wavelet transforms whose complexity is no greater G'G + H*H = 1, (3)
than that of the corresponding fast Fourier transform. Nu-
merical examples are presented in Section Ill-C, where and TT* = I is equivalent to the following three equations,
we discuss frequency localization, time-frequency filtering,
and signal compression using discrete wavelet transforms. GG" = 1 (4)
In Section III-D we briefly sketch an extension of wavelet HH* = 1 (5)
transforms to two-dimensional signals such as images.

In Section IV we extract the key ideas from [2, Sec- GI" = 0. (6)
tions 3.A. and 4.B.] to give a self-contained derivation of To summarize, if we "decompose" z with
the sequence of operators used to implement fast wavelet
transforms for discrete-time periodic signals. u = Gz,

v = Hz, (7)
1I. PYRAMID ALGOR17HMS

and, if (3) holds, then we can reconstruct z from u and v
The basic building block for pyramid-type algorithms is with

a mapping from an input space X into a product space, z = G'u + HWv.
say U x V, as discussed in Section II-A. In Section 1I-B
we iterate a sequence of these operators to obtain a De- Remark: As shown in Section IV-C, in the wavelet set-
composition Algorithm and a Reconstruction Algorithm. ting, G can be viewed as a low-pass filter, and H can be
Applications to signal compression and time localization viewed as a high-pam filter. Thus, in (7), we think of v as

are discussed in Sections Il-C and II-D, respectively, carrying the high-frequency detail in z, and we think of u
as carrying the smoother, low-frequency information in z.

A. Isometries and Product Spaces B. The General Algorithms

Let U" and V be inner-product spaces with respective in-
ner products (., .) and (.,.). This induces an inner product Let X0, Xi, . . X, and V, .... ,V, be two sequences of
on U x V by taking inner-product spaces. Denote the inner product on X,

by (-, .)j and the inner product on Vi by (., -)j. For j =
u 1 r ,i) + (V, 0,....J-1, let G,:X, -- X,+, and let H,:X, -- Vý+,.
v J[ J = Consider the following procedure.
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Decomposition Algorithm the following identity into (9):

Let zo E Xo be given. (vj, iA) 1 + (zj, ij),
for j = 0 to J - 1 = (H .i , i), + (G.izj.i, t1 )1

Gj+t G( , ) +
v + = Hj=-

next j = + .. _ ;b-
end =

If (3) holds for each pair GC and H,, then zo can be 0

recovered from v . . vj, .rj by the following procedure. Corollary 2: If (3) holds for each pair (. and H,, then
D*D = I; i.e., D is an isometry.

Recon~struchon Algorithm Proof: If we had assumed that . = Dio in the pre-

Let tr ..... rzj be given, ceding proof, then we would have obtained (Dro, Dio) =

for i = J - 1 toO (zo, 1o)o; i.e., D preserves inner products. 0

. G- +j + Hj, +•I Corollary 3: If (4)-(6) hold for each pair Gj and Hj,
next j then DD" = I. If (3) also holds, then D is unitary.
end

Proof: Fix a y = (v .  vJ,zj) E Y and let

If we let zj-.....,to be generated by the Reconstruction Algo-
rithm. Now apply the Decomposition Algorithm to x0.

Y 1× " × I'× .Vj, XSince x0 = Gzt1 + H~vl, Goxo = z, by (4) and (6). Simi-

and if r'l .. vj, and xj, are generated by the Decomposi- larly, for j = 1..., J - 1, Gjt, = t,.i. In addition, since
tion Algorithm, then setting G)H; = 0 implies H, G* = 0,

Dro = (t , ..... t',.j~) (8) Hxj = H,(G;t,+I+H;v,+i) = vj+,"
Hence, DD=y = y. [(

defines a mapping D: N0 - Y. We equip Y with the

induced inner product. denoted by (-, .). Note that we are Proposition 4: If D is unitary, then we can write X0 as
now using row-vector notation for product-space vectors.

Remark: We can extend the ideas in the remark at
the end of Section 11-A to D by saying that v, contains where
the highest frequency information in z0 , while vj and zj
contain the lowest frequency information about zo. Wj =A {D*y : y = (0,..., 0, i, 0,.. .. 0),v, E V2 }

and
Proposition 1: Assuming only that G* and Hj* exist, the

vector 10 generated by applying the Reconstruction Algo- B, i {D1 y : y = (0,..., 0, t.j), zt E X. }
rithm to an arbitrary vector • = (v . .... J,1j) E Y, is
equal to D*y; i.e., the Reconstruction Algorithm imple- are orthogonal subspaces of X0.

ments D. Proof- Since D*D = I, we can write z 0 = D*(Dxo),

and by (8) it is clear that X0 is a sum of the indicated
Proof: Let zo be any element of X0 , and let Y subspaces. Since DD" = I, it is easy to see that X0 is a

be any element of Y. We must show that if l 0 is ob- direct sum and that the subspaces are orthogonal. 0
tained by applying the Reconstruction Algorithm to j,
then (Dxo, ) = (to, 10 )o. Write C. Application to Signal Compression

- Given z0 E X0, apply the Decomposition Algorithm to
(Dxo,)) = -(Vhj,iý)j + (zi, ,j)j, (9) obtain Dzo E Y as in (8). Assuming that (3) holds for

) =I each Gi and Hj, D preserves norms, and thus

where I,,. t'J. and tj are obtained by applying the IIZl112 = 1l1zol2

Decomposition Algorithm to z0 . In addition to 10 , let
it..ii.- i also be obtained by applying the Reconstruc- = IV ill + 1II. ll.
tion Algorithm to 9. Then for each j = J._ 1, substitute
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To store a compressed version of z 0 , we save only those vi III. DISCRETE WAVELET TRANSFORMS
and zxj of significant energy relative to 1zoll0'. To recover
an estimate of za, we apply the Reconstruction Algorithm, To make the foregoing discussion concrete, we apply it
replacing the omitted data with zeros. Numerical examples to the following situation. Let N be a power of 2, and set
are discussed in Section IlI-C. X, -" 012 ', j = 0'.... J,

D. Interaction with "Shift" Operators-Time Localization where 2 < N/2J and CN/ 2' is equipped with the usual
Fix an integer k, I < k < J, and consider a sequence of Euclidean inner product. We take V, = X,, 1 ,

Fix n itege k,1 ~as was done in Section lI-D.
operators So .. , Sk such that Si: X, - XN and such that

== - 1. (10) Convention: As in the theory of discrete Fourier trans-
forms, we do not distinguish between vectors in CN/ 2' and

Remark: When this setup is applied to wavelets, we their doubly-infinite N/2j-periodic extensions. Recall that
take Xj to be the set of column vectors of length N/2', the N-length discrete Fourier transform (DFT) of a se-
where N is a power of 2. We interpret So as a circular quence x E CN is defined by
shift of 2 k units, and S, as a shift of 2 k-J units. Thus Sk 1-_
would be a shift of 20 = I unit. See Section III for further i(u) = x(n)e-ilr"",
discussion.

n=O

Fix zo E X0 , and let xi, t,,... xj, vti be given by the for all integers u.
Decomposition Algorithm. Set 10 _ St00 and let -;I, bi, Definition 5 (Discrete Wavelet Transform): If the oper-
S ... .j, ft'j be generated by applying the Decomposition ators Gj: Xi - X1+l and H,: X, --Vj+ have the form
Algorithm to 10 . Then it follows by induction that

N/2) -1
1 =Si X, =0 ... k. (11) (Gjz)(m) = 1 gj(n - 2m)x(n), (14)

At this point we restrict our setup and require that the n=0
space +t = Xj+, j = 0...,J - 1, so that Sj+1 can N/2'-1
operate on elements of V1+= X,+ 1 . We assume that in (nAz)(m) = Z h,(n-2m)z(n), (15)
addition to (10), "=0

HjS1 = Sj+, 1 Hj, j = 0,..., k - 1. (12) where gj, hi, and x are N/2i-length periodic sequences,
and where gi and hi are such that (3)-(6) hold for G, and

With r, t and 1, ij as before, we"have, forJ = 0. k- Hj, then Dzo defined by using these operators in the De-

composition Algorithm is called a discrete wavelet trans-
'jl =+ H form (DWT) of z0 .

H, S, X1, by (11), For operators of the form (14) and (15), if 1 < k < J,

= S+IH, x, by (12), and if

= S,+lvj+l. (13) (Sjz)(n) A z(n_2k-i), j=O,...,k,

Now consider an x0 such that applying the Decomposi- where z E X, = CNV/2 3 , then the periodicity convention
tion Algorithm to xo yields can easily be used to show that (10) and (12) hold.

Dzo = (0,.O..0,vk, O, .0,). Remarks: (i) From the derivation in Section IV-A and

We claim that if (3) holds for each pair GC and Hj, then from (57) in the Appendix, it can be seen that if G, and
H, satisfy (3)-(6), then gi and h, are discrete-time pe-

D10 = D(Sozo) = (0,..0,Skv&,O.. . 0). riodic analogs of conjugate quadrature filters in [14]. In

By (13) i¾ ..... kl are all zero and 4' = Skvk. If k = J, Section IV we construct g, and hi under two additional
simply note that ij = 0 by (11). If k < J, the Reconstruc- constraints. The first is that gi(n) and h,(n) be zero for
tion Algorithm shows (on account of (3)) that xj,...,zk most values of n. The second is that Daubechies' con-
are all zero. Then by (11), .4 = 0. Now, by the Decom- straint (51) hold.
position Algorithm. k+,, +t ... -.;, ti are all zero. (ii) The Decomposition and Reconstruction Algorithms

In general we have can be implemented by analysis and synthesis filter banks,

D(Soo) = (0,.,0,S~v,0,._0). respectively.
k ((iii) The operators G, and Hi in (14) and (15) can be

Remark: If D is unitary, we see that So maps Wk into identified with (N/21+) x (N/2i) matrices; for an example
itself. If k = J, So also maps \j into itself. with j = 0, see (28)-(29) below.
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A. Wavelet Bases B. Fast Wavelet Transforms

We now construct a special orthonornial basis for X0 . Let p be an even integer such that 2 < p < N/2j.
Recalling Proposition 4, it suffices to construct orthonor- As will be shown in Section IV, one can find a sequence
mal bases for W, and B,. 9(0) .... g(p- 1) such that if

For each space CN/2', let 6j denote the N/2'-periodic f ( (n) n -0 p -

Kronecker delta, and set 6,,(n) S 6,(n - i). Then the gun) j.0, n0 = p. ...... V/2, - 1, 9)

,. i = 0 ...... V/2' - 1, constitute the standard basis for and if
C •/2 = .\ -= Next, set _ _ _ _

hj(n) (-_l)g,(I - n), n = 0. N/2J - 1. (20)
d,=. (0...., 6ji,.... 0), j = 1, J, where j = 0 .. , J, then the operators G, and H, given

where 6,, is in the jth position out of J + 1 positions. Set by (14) and (15), respectively, satisfy (3)-(6). The discrete
wavelet transform is then implemented by the Decomposi-

ej, • (0 .... 0 ,6 jj). tion Algorithm, and the inverse transform is implemented
by the Reconstruction Algorithm.

If we let We now show that for 2p < log2 N, such a discrete
Sa ,wavelet transform is no more difficult to compute than
= D'd,, and ;j, = D'ej,, an N-point fast Fourier transform, which requires order

and if we assume that D is unitary, then .Vlog2 N complex multiplications. Since g,(n) and h,(n)
have only p nonzero terms, the number of multiplications
required to compute (14) and (15) for m = 0. N121+1-
1 is pN/2.. To implement the Decomposition Algorithm

San orthonormal basis for IV,, and requires that we do this for j = 0 ... , J - 1. Hence, the
I total number of multiplications is always less than 2pN.

t V:iJo.;ýJN/2 -1 If 2p < logN2  , then 2pN < N log2 N. Note that even if
is an ort honormal basis for Bi. The union of all these bases 2p > log 2 N, we can still use the inequality p <_ N/2J to
is called a wavelet basis for X0 . The signals V,., are called bound the number of multiplications by N 2 /2"7-, which
wavelets, and the signals ; j, are called scaling functions, is less than the N' multiplications required to compute
Examples are discussed in Section III-C. directly all of the N-length inner products appearing in

Rrmark.s: (i) Recalling the expansion (1), observe that (.
In fact, further speed-ups can be achieved by adapting

(.ro, 4,,)0 = (ro, D'dj,)o some of the ideas in Rioul and Duhamel [12, Section 111].
(Dxo, dij,) For example, at each interation j, the sums in (14) and(15) can be split into sums over n = even and n = odd

= (tv,. 6,), This results in the sum of two convolutions. Depending on
= ',:(i), the relative values ofp and log2 (N/21+l), it may be more

efficient to do this with fast Fourier transforms. For small
Similarly, (xo,,;j,)o = xj(i). p, Rioul and Duhamel suggest the use of short-length fast

(ii) By the results of Section II-D, we see that for k = running FIR algorithms [11, 161.

4'k,(n - 12 k) = Wt.j+(n), I = 0... N/21k - 1, (16) C. Numencal Ezamples

and To obtain the g(n) mentioned at the beginning of the
previous subsection, it is necessary to solve (50)-(51) in

,j,(n - 12j) = ,j.,+i(n), i = 0,..., N/2J - 1. (17) Section IV. We take p = 4 so that these equations can
easily be solved by hand. In the course of the calcula-

In particular, it follows that the subspace W& (resp. Bj) tions, there are two places where square roots must be
is closed under cyclic shifts of 2 k (resp. 2 J) units. taken. Thus, there are four possible solutions, depending

(i1) The Reconstruction Algorithm shows that 1i, = on whether positive or negative roots are used. If the neg-
!f7•,,. H'2, = ('f 1 2,,. and ative root is always taken, we obtain

6';, G - 2;G 2 H;-,Ij,, j = 2. J. g(O) = .482962913145
g(1) = .836516303738

Also. g(2) = .224143868042 (21)
,;j, = G,.Gbj, (18g(3) = -. 129409522551



These are the first four entries in [2, Table 1, p. 980] (where most of the energy of the high-frequency signal is in vi.
they are called h(n)). If we had always taken the positive Keeping in mind that v, is a subsampled signal of length
square root, we would have obtained 4(n) = g(3 - n), 64 = 128/2, and that 16/2 = 8 and that 63/2 truncates to
n = 0,1,2,3. The two remaining solutions are -g(n) and 31, we set v1(8) .. , vj(31) to zero. If we inverse DWT.
-4(n). we obtain the signal shown in Fig. 11.

Let g be given by (21) and define g, and hi by (19) and To remove the low-frequency signal during a specified
(20) with N = 128 and J = 5. Note that since g, and hj time interval would be more difficult because the time res-
are real, if z0 is real, so is DrO. olution of vj for larger j is not as fine.

Example I (Wavelet Basis): The signals V1.2, t'2.2, Example 4 (Signal Compression): We now apply the
L'32. V4.2. V'5.2, and s are shown in Figs. 1-6, respec- ideas of Section I-C to the DWT shown in Fig. 9. If
tivwly. The remaining basis signals can be obtained by we set v, = 0; i.e., we set the first 64 elements in the fig-
translation as indicated in (16) and (17). ure to zero for a 2-to-1 compression ratio, and if we apply

From the figures, one might suspect that the Reconstruction Algorithm, we obtain the waveform in
Fig. 12.

t.- 2'n,+i.2(2n), =.')+l2( 2 n) # 0, In Fig. 10 we set v2 = 0; i.e., we set elements 64-95 to
Kt'n = ~ 0, otherwise. zero for a 4-to-3 compression ratio. Applying the Recon-

struction Algorithm, we obtain Fig. 13.
Hlowever. closer inspection reveals that this cannot be true. As a final example of signal compression, we consider
To see this. note that from Figs. 1 and 2. V2,2 has 10 the Gaussian pulse,
nonz,,ro components, while L-1.2 has only 4 nonzero com- 2

ponents. To more fully understand what is happening, it xo(n) = exp n -I(i63 n = 0,...,127, (24)
is necessary to consider the limiting continuous-time case 0 '
a~s In 2.(n2]. shown in Fig. 14. Its DWT is shown in Fig. 15. If we set

Example 2 (Frequency Locahzaton): As a low-frequen- both t, and v2 to zero, for a compression ratio of 4-to-1.
cy ;i•gial we consider and apply the Reconstruction Algorithm, we obtain the

result shown in Fig. 16.

.rn(n) = cos (-r -7n). n = 0. 127, (22) We close this subsection by noting that improved results
can be obtained at the expense of using a larger value of

and as a high-frequency signal we consider p.

rra(n) = cos (T53n. n = 0 ... , 127. (23) D. Discrete Wavelet Transforms for Images

We now briefly sketch a simple extension of one-
T'he signals are plotted in Figs 7 and 8. and their DWTs dimensional wavelet transforms to handle two-dimensional
are shown in Figs. 9 and 10. images; i.e., where before z0 was an N x 1 vector, we now

Note: In the current setup, if y = Dxo, then suppose that z 0 is an N x N matrix, where N and N" are
both powers of 2. Let G and H be N/2 x N matrices

y EI64 X IR32 × x IR1 x IR X IR4 . that satisfy (3)-(6). Similarly, let d and Hf be Nr/2 x N
matrices that also satisfy (3)-(6). Set

Hence. when examining graphs of y(n), one should keep in
mnind that y(0). y(63) corresp~.nd Is vj(0) .. ,vl(63), A~G an G ~
!(6.1). y(95) correspond to v2 (0) . V2(31), and so H nH_.
on,

By our assumptions on G, H and G, H, we have TT = I,
C'learly, most of the energy in the low-frequency signal TT* = I, to"t = I, and TT = I. Thus, the mapping

i-s located in t3 and V4, while most of the energy in the ze - TxoT* is a unitary operator.
high-frefquency signal is located in vt. Now observe that

Frample 3 (Time-Frequency Filtering): Let xo denote TzT"* GzO0* GzoH 1 (25)
the ýtjm of the two signals in (22) and (23). We wish- Hz0oG HzoH .
t,) remove the high-frequency signal during the time inter-
ýal n = 16, .. 63 Let (ti ... , rs,) denote the DWT of Let rx = Grog° and let v, denote the remaining blocks
r.r ('onsidering the sum of the DWTs in Figs. 9 and 10, of the matrix in (25). It should now be clear how to write

"i/5



the Decomposition and Reconstruction Aliorithms using N-1

a sequence of matrices Gj, H,, Gj, and Hi that satisfy 1 g(n- 2m)h(n) = 0, (32)
(3)-(6). If these matrices are obtained as in Section III-B, ,=0

then we require that 2 < p, 5 < min{N, N/}/2'. where the overbar denotes the complex conjugate, and
6 denotes the M-periodic Kronecker delta. If we de-

IV. CONSTRUCTION OF G AND Hj FOR FAST fine the M-periodic sequences ge(k) = g(2k),go(k) =
WAVELET TRANSFORMS g(2k + 1),h,(k) = h(2k), and ho(k) = h(2k + 1), then

(30)-(32) become

As we saw in Section I11-B, the key to fast wavelet trans-

forms is to find g, such that most of the g,(n) are zero. M-t
Then by (20) most of the h, (n) will also be zero. Of course, 1 ge(k - m)#e(k) + g0 (k - m)g°(k) = 6(m), (33)
we also need to show that (3)-(6) hold for the correspond- k=_
ing operators Gj and H,. M-1

Our plan is to construct G, from G0 and then to con- Z he(k - m)he(k) + ho(k - m)ho(k) = 6(m), (34)
struct H, from G.,. k=

M-1

.4. Obtaining H, from Gj 1 ge(k -m)he(k) + go(k- m)ho(k) = 0. (35)
k=0

Without loss of generality we may work with G0 and Ho.
To simplify the notation, we drop the subscript 0. and we Next we take M-length DFTs of (33)-(35) to obtain, after

let If = V/2. Then (14) and (15) become changing -u to u,

N-1 Ige(U)I2 + I1o(U)12 = 1, (36)
(Gr)(m) = 1 g(n - 2rn)x(n). (26) Ihe(u)12 + [ho(u)12 = 1, (37)

n =O

,-I ge(u)he(u) + go(u)ho(u) = 0. (38)

(Ilx)(m) = h(n - 2rn)x(n), (27)
,n=o We also claim that

where g, h, and x are N-periodic sequences. The purpose
of this subsection is to exploit the formulas (26) and (27) Me(U)Mo(U) + he(U)ho(U) = 0. (39)

to show that if (4) holds and if h is given by (46) below, To see this, consider the left-most column of (3). We find
then (3), (5), and (6) also hold. The derivation is adapted that
from [2. Section 3.A.].

Clearly. G and H can be identified with the M x N
mat rices 1 #(n - 2m)g(-2m) + h(n - 2m)h(-2m) = 6(n),

m=0
g(0) g(l) ... g(NV- 1)1 (40)

g(-2) g(-1) g(N - 3) ( where here 6 denotes the N-periodic Kronecker delta. For
. . (28) n= 2k+ 1 and k= 0,...,M- 1, thisbecomes

g(2 - ,N) g(3 - N) ... g(1) M-1
E g)(k - m)ge(-m) + h.(k - m)he(-m) = 0.

h(0) h(1) ... h(N - 1) m=0
h- 1- 1 (29) Taking M-length DFTs and changing -u to u yields (39).

We now claim that (36)-(39) ame equivalent to (3)-(6). It
h(2 - N) h(3 - N) ... h(1) is not hard to see that (36)-(38) are respectively equivalent

Regarding (3)-(6) a- matrix equations involving (28) and to (4)-(6). However, (39) alone does not imply (3). The
reason for this, as will become clear below, is that we must

(29) we proceed as follows. First, consider the left-most con bot the en and the oddrcolumns of (3).
cohins o (4)(6) We ind hatconsider both the even and the odd columns of (3).columns of (4)-(6). WVe find that

Lemma 6: Equations (36)-(39) together imply (3).

Z g(n - 2m)4(n) = 6(m), (30)
,=0 Proof We begin with the following observations.

First, it is not hard to show that (36)-(39) imply
Z h(n - 2m)h(n) = 6(m), (31)
n=0 Ih.(u)l = 14o(U)l and [ho(u)[ = [§.(u)". (41)
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Substituting (41) into (36) and (37) gives Remark: Solutions of (30) are easy to construct because
(30) is equivalent to (36). Suppose that 4e(u) is arbitrarily

ge(u)4 2 + Ihe(U)12 = 1, (42) given. Without loss of generality, we may assume that
de(u) has been scaled so that 14,(u)1 2 < 1 for all u. For cach

and 2 u, let 4.(u) be any complex number such that 14o(U)1 2 =
14o(U)1 + lho(u)] 2 = 1. (43) 1 - 14g(u)1 2 . Then (36) holds for all u. If we let h(n)

(Conversely, it is also true that (42), (43), (38), and (39) be given by (46), then G and H will satisfy (3)-(6). In
imply (41), and hence (36) and (37) as well.) We now ob- the next section, we consider the more delicate task of
serve that (42) also follows directly from (40) by letting constructing g(n) so that in addition to (30), we also have
n = 2k and taking M-length DFTs. To obtain (43) di- g(n) = 0 for most values of n.
rectly, consider the second column of (3) (column index 1).
We obtain B. Selection of Go

A - I As before we drop the subscript 0. The purpose of this
Z g(n - 2rn)g( 1 - 2m) + h(n - 2rm)h( 1 - 2m) = 6 (n-1). subsection is to find a solution of (30) such that g(n) = 0
'n=0 for most values of n.

(44) Let A(m) denote the sum in (30). Clearly, A has period
Letting n = 2k + 1 and taking M-length DFTs yields (43). M. Now observe that as m takes the values 1 ..... %/2- 1.
We can now see that (36)-(39) together imply (41), which the number M - m takes the values M - 1, ... ,M/2 + 1.
then gives us (42) and (413). Then from (39) we recover (40) Thus, A(m) = 0 for m = 1,...,M/2 - 1 if and only if
with n = 2k + I; from (42) we recover (40) with n = 2k, A(m) = 0 for m = M/2 + 1 .... , M- 1. Therefore, (30)
and from (43) we recover (44) with n = 2k + 1. Note that is equivalent to saying that A(m) = 0 for m = 0 . i./2.
(44) with n = 2k is equivalent to (40) with n = 2k + 1, We now impose the constraint g(n) = 0 for p < n < N- 1.
which we have already recovered. - where p _< M and p is even. It then follows that (30) can

Rrniark: Similar arguments also show that (3) and (6) be replaced by
alone are equivalent (42), (43), (38), and (39). This was
the approach used in [2]. With either approach we obtain Y' g(n)g(n + 2m) = 6(m), m = 0,. M/2. (48)
(41). on which we focus next. "="

Equation (41) leads us to impose the constraints Now. in (48) n + 2m < (p- 1)+ 2(M/2) = p- 1 + M <

u) - 1, since we assumed p < M. So, the sum in (48) will
hti) = g0 u) and h,(u) = ) (45) automatically be zero if 2m > p. Thus, we may rewrite

Lrmma 7: The condition (45) is equivalent to (48) as

h(n) 1)(0 - n). (46) Zg(n)§(n+2m) = 6(m), m = 0,.. p/2-1. (49)

Proof To show that (45) implies (46), substitute (45) n0

into the easily verified formula, Finally, observe that n + 2m < p - 1 if and only if n <
p-2m- 1, and since m < p/ 2 -1, p-2m- 1> 1. Hence,

h(u) = he(u) + ho(U)e-J', (47) (49) becomes

where h is the N-length DFT of h. We obtain p-2m-1

h(u) = g(n)g(n+2m) = 6(m), m =0,.. .0p/2- 1.

(50)
from which (46) follows. The fact that (46) implies (45) Remark: Obviously, (50) does not depend on N. Now
follows by separately considering (46) with n replaced by suppose p is even and that we have a solution to (50).
2n + l and by 2n. 0 Suppose also that N and J are such that 2 < p <_ N12J.

Theorem 8: If G and H are of the form (26) and (27), Clearly, if gi is given by (19), then (30) will hold for g,. If

respectivelv, then (30) and (46) imply that (3)-(6) hold. we now define hi by (20), Theorem 8 shows that (3)-(6)
will hold for G, and H. if they are defined by (14) and

Pro 9f Since (46) implies (45), we clearly have (38) (15), respectively. As argued in Section 1lt-B, we obtain a
and (39). Next., recall that, (30) is equivalent to (36), and if fast wavelet transform.
(36) holds, then (45) implies (37). Finally, since (36)-(39) We now observe that (50) gives us only p/ 2 nonlinear
are equivalent to (3) (6). the theorem follows. 0 equations in p unknowns. Therefore, we must impose ad-
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ditional consistent constraints on g(O) . g(p - 1) in or- filter. Now suppose that we substitute (46) into (52). We
der to fix a solution. The linear constraints suggested by find that
Daubechies [2] are '- 0E• h(n) = 0, (55)

di ( g(n):- = 0 for k = 0.p/2 1. (51) from which it follows that if .(n) =- 1, then
n=0 Z=-1

N- I
Theorem 9 (Daubech:es): The constraints (51) are con- Z_ h(n - 2m)z(n) = 0.

sistent with (50). In fact, we can require that g(n) be real
valued.

Since H blocks the d.c. signal z(n), we view H as a high-
The proof of this result, which is effectively contained in pass filter.

[2, Section 4.B.], is sketched in the Appendix. We now show that the constant C in (54) satisfies C2 =
Remark: The theorem statement only guarantees exis- 2. For x(n) = 1, we just showed that Hz = 0. Thus, (3)

tence of a solution to (50)-(51). In fact, the proof is con- implies IIG*GzxI 2 -= Iz112. Next, (4) implies IIG*G.I1 -
structive. obtaining solutions by factoring certain polyno- JIGxzI 2. Finally, I]zW = N. and by (54), I JG1ji2 = C 2 N/2.

mials: however, this is not the only way to obtain a solution For k > 1, (51) simply specifies how G and H process
in a given instance. One can attempt a direct solution by certain higher-variation signals.
hand if the system of equations is small (e.g., p = 4) or by Remark: Daubechies' original reason for introduc-
numerical techniques such as Newton's method otherwise. ing (51) was related to regularizing the behavior of
However, see also the remark at the eil of the Appendix. the continuous-time analog of (18) for large J [2, Sec-
Note also that if g(n) is real, then so is h(n). Hence, D tion 3.B.].
can also he viewed as a mapping from I11' to IRN,

APPENDIX
C. Interpretation of (51) PROOF OF THEOREM 9

We now show that taking k = 0 in (51) suggests that(7can be viewed as a low-pass filter and that Hf can be The proof is self-contained except for references to [2,
viewed as a high-pass filter. We assu de that (3)-(6) hold Lemmas 4.2 and 4.4]. Since these lemmas are statements
Viewith a and high-pas filn We 2 7 tabout certain polynomials, their proofs in [2] can be read
with G, and H given by (26)-(27). independently of the rest of [2].Recalling that g(n) = 0 for n = p, .... - 1, and taking inendtlofhersof[.
k = 0 in (51) yields W = ith slight abuse of notation, let G(z) denote the poly-

"i (nomial appearing in (51). Then (51) is equivalent to saying

,N-i that (1 + z)p/ 2 is a factor of G(z), and hence,
1: g(n)(-1)" =0, (52)

n=0 G(z) = [4(1+z)] 12 F(z) (56)

or. equivalently, for some polynomial F of degree p/2 - 1. The factor of
1/2 is included for convenience in the derivation below.

gf-I gObserve that the coefficients of G are all real if and only

Z g(m) = j go(m), if the coefficients of F are all real. We now require that
,_ m=0 g(n) be real. Thus, it suffices to prove the existence of a

In other words, polynomial F of degree p/2 - 1 with real coefficients such

N-I that if G(z) is defined by (56), then (50) holds.
g g(n) = C, (53) To begin, first recall that (50) was derived from (30).

n=0 and (30) is equivalent to (36). If we let 4(u) denote the

whee CN-length DFT of g(n) and use the analog of (47), we findwhere C g 2 i-•,,•0 ge(m). If we set r'(n) =1, then (53) ta 3)i qiaett

implies that that (36) is equivalent to

.,_ 14(u)l' + 14(u + N/2)12 = 2. (57)

Sg(ra - 2m)z(n) = Cxr(2m). (54) Now observe that 4(u) = G(e' t ) when = -2,ru/N and u

-is an integer. If (56) holds, then
In other words, the operator G simply scale-s and subsam-
pies the d.c. signal x(n). Hence, we vir" G as a low-pass IG(ej)l 2 = [cos2(t/2)]P/ IF(eJC)I2 .
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Next, if F(z) has real coefficients, then jF(ej )12 also (5] C. E. Heil and D. F. Walnut, "Continuous and discrete

has real coefficients and is real-valued. Hence, we can wavelet transforms," SIAM Review, vol. 31. no. 4, pp. 628-6M0,

write IF(eJ)I1 = F(eJE)F(e-j() as a polynomial of de- Dec. 1989.

gree p/ 2 - I in cose, or equivalently, in sin 2(Q/2); i.e.. we [6] F. Hlawatsch and G. F. Boudreaux-Bartels "Linear and

may write IF(led)1 2 = P(sin2 (ý/2)), where P is a polyno- quadratic time-frequency signal representations," IEEE Signal

mial of degree p/ 2 - 1. So, if (56) holds for some F with Proc. Mag., vol.9, no. 2, pp. 21-67, Apr. 1992.

real coefficients, and if (57) holds (which is what we are [7] K. Hoffman and R. Kunze, Linear Algebra. 2nd ed. Englewood

trying to prove), then Cliffs, NJ: Prentice-Hall. 1971.

yp/2p I y) + (I y)p/2p(y)) [8] S. Mallat, "A theory for multiresolution signal decomposition:

- 2, (58) The wavelet representation," IEEE Trans. Pattern Anal. Ma-

chine Intell., vol. 11, no. 7, pp. 674-693, July 1989.

where y = cos 2(ý/2), • - -27ru/N, and u is an integer. [9] -, "Multiresolution approximations and wavelet orthonor-

Conversely, in [2, p. 975, Lemma 4.4] it is proved that the mal bases of L
2

(]R)," Trans. Am. Math. Soc., vol. 135, no. 1,

polynomial pp. 69-88, Sept. 1989.

p/2- [ [10] - , "Multifrequeio.., channel decompositions of images and

P/ -2 ( +1 k wavelet models," IEEE Trans. Aconst. Speech. Signal Process.Z( 21 k ing, vol. 37, no. 12, pp. 2091-2110, Dec. 1989.
k=0

[II] Z. J. Mou and P. Duhamel, "Short-length FIR filters and their

satisfies (58). Furthermore, P(y) is nonnegative for 0 < use in fast nonrecursive filtering," IEEE Trans. Signal Proc.,

y <_ I, and by [2. p. 972, Lemma 4.2], there exists a vol. 39, pp. 1322-1332, June 1991.

(nonunique) polynomial Q of degree p/
2 

- I with real co- [12] 0. Rioul and P. Duhaniel "Fast wavelet algorithms for discrete

,tficients that satisfies IQ(e'ý)12 = P(sin 2 (ý/2)). Thus, if and continuous wavelet transforms," IEEE Trans. Inform. The.

we take the Q of Dafibechies and obtain the g(n) from ory, vol. 38. no. 2, pp. 569-586, Mar. 1992.

) = [(1 + _)]p/2Q(Z), [13] 0. Rioul and M. Vetterli, "Wavelets and signal processing,"
G(z) 2 [IEEE Signal Proc. Mag., vol. 8, no. 4, pp. 14-38, Oct. 1991.

andi set • = -27rt/N and y = cos 2 (ý/2), then [t41 M. J. T. Smith and T. P. Barnwell I1, "Exact reconstructiontechniques for tree-structured subband coders," IEEE Trans.

Acosst. Speech, Signal Processing, vol. ASSP-34, no. 3, pp. 434-
+g(ts + V/2)12  

441, June 1986.

= IG(eJE)1 2 
+ IG(eI- w))1

2  
[15] G. Strang, "Wavelets and dilation equations: A brief introduc-

= yp/2p( I - y) + ( I - y)p/
2 
p(y) tion," SIAM Review, vol. 31, no. 4, pp. 614-62

7
, Dec. 1989.

= 2. [16] M. Vetterli, "Running FIR and IIR filtering using multirate

filter banks," IEEE Trans. Acoust. Speech, Signal Processing,

0] vol. ASSP-36, pp. 730-738, May 1988.

Remark. In general there are p/2 choices for Q(z) (and

hence G(()). The coefficients g(n) (called h(n) in [2]) given
in [2, Table 1. p. 9801 correspond to taking Q(z) to have
all its roots inside the unit circle; i.e., Q(z) is a minimum-
phase filter.
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Fig. 1. Plot of 01,2(n) frorr :J-xainpe 1.
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Fig. 2. Plot of 0 2,2(n) from Example 1.

/2.0



0.2

0

-0.2-

-0.4-

-0.61
0 20 4060 8,0 10,0 12,0 140

Fig. 3. Plot Of 0k3,2 (n) from Example 1.
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Fig. 4. Plot Of 0k4,2(n) from Example 1.
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Fig. 5. Plot of 0 5,2(n) from Example 1.

0.25

0.2

0.15

0.1

0.05

0 _

-0.05

-0.1-
0 20 40 60 80 100 120 140

Fig. 6. Plot of p 5,1(n) from Example 1.
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Fig. 7. Graph of zo(n) defined in (22).
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Fig. 8. Graph of zo(n) defined in (23).
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Fig. 9. DWT of Fig. 7.
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Fig. 10. DWT of Fig. 8.
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Fig. 11. Time-frequency filtered signal of Example 3.
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Fig. 12. Reconstruction after compression of signal in Fig. 7.
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Fig. 13. Reconstruction after compression of signal in Fig. 8.

1.2

I

0.8-

0.6-

0.4-

0.2

0
0 20 40 60 80 120' 140

Fig. 14. Graph of xo(n) defined in (24).
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Fig. 15. DWT of Fig. 14.
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Fig. 16. Reconstruction after compression of signal in Fig. 14.
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